Publications by authors named "Jacek P Szubiakowski"

The subject of this paper is studies of the deterministic identifiability of molecular parameters, such as rotational diffusion tensor components and orientation of electronic transition moments, resulting from the time-resolved fluorescence anisotropy experiment. In the most general case considered, a pair of perpendicularly polarized emissions enables the unique determination of all the rotational diffusion tensor's principal components. The influence of the tensor's symmetry and the associated degeneration of its eigenvalues on the identifiability of the electronic transitions moments is systematically investigated.

View Article and Find Full Text PDF

The parameters describing the kinetics of excited-state processes can possibly be recovered by analysis of the fluorescence decay surface measured as a function of the experimental variables. The identifiability analysis of a photophysical model assuming errorless time-resolved fluorescence data can verify whether the model parameters can be determined and may lead to the minimal experimental conditions under which this is possible. In this work, we used the method of similarity transformation to investigate the identifiability of three kinetic models utilized to describe the time-resolved fluorescence of reversible intramolecular two-state excited-state processes in isotropic environments: (1) model without added quencher, (2) model with added quencher, (3) model with added quencher coupled with species-dependent rotational diffusion described by Brownian reorientation.

View Article and Find Full Text PDF

A deterministic identifiability analysis of the kinetic model for a reversible intermolecular two-state excited-state process with species-dependent rotational diffusion described by Brownian reorientation is presented. The cases of both spherically and cylindrically symmetric rotors, with no change in the principal axes of rotation on interconversion in the latter case, are specifically considered. The identifiability analysis is carried out in terms of compartmental modeling based on the S(t) identical with I( parallel)(t)+2I( perpendicular)(t) and D(t) identical with I( parallel)(t)-I( perpendicular)(t) functions, where I( parallel)(t) and I( perpendicular)(t) are the delta-response functions for fluorescence, polarized, respectively, parallel and perpendicular to the electric vector of linearly polarized excitation.

View Article and Find Full Text PDF