Publications by authors named "Jacek P Dworzanski"

Modern taxonomy, diagnostics, and forensics of bacteria benefit from technologies that provide data for genome-based classification and identification of strains; however, full genome sequencing is still costly, lengthy, and labor intensive. Therefore, other methods are needed to estimate genomic relatedness among strains in an economical and timely manner. Although DNA-DNA hybridization and techniques based on genome fingerprinting or sequencing selected genes like 16S rDNA, gyrB, or rpoB are frequently used as phylogenetic markers, analyses of complete genome sequences showed that global measures of genome relatedness, such as the average genome conservation of shared genes, can provide better strain resolution and give phylogenies congruent with relatedness revealed by traditional phylogenetic markers.

View Article and Find Full Text PDF

Timely classification and identification of bacteria is of vital importance in many areas of public health. We present a mass spectrometry (MS)-based proteomics approach for bacterial classification. In this method, a bacterial proteome database is derived from all potential protein coding open reading frames (ORFs) found in 170 fully sequenced bacterial genomes.

View Article and Find Full Text PDF

Timely classification and identification of bacteria is of vital importance in many areas of public health. Mass spectrometry-based methods provide an attractive alternative to well-established microbiologic procedures. Mass spectrometry methods can be characterized by the relatively high speed of acquiring taxonomically relevant information.

View Article and Find Full Text PDF

A pyrolysis-gas chromatography-ion mobility spectrometry (Py-GC-IMS) briefcase system has been shown to detect and classify deliberately released bioaerosols in outdoor field scenarios. The bioaerosols included Gram-positive and Gram-negative bacteria, MS-2 coliphage virus, and ovalbumin protein species. However, the origin and structural identities of the pyrolysate peaks in the GC-IMS data space, their microbiological information content, and taxonomic importance with respect to biodetection have not been determined.

View Article and Find Full Text PDF

Detection and identification of pathogenic bacteria and their protein toxins play a crucial role in a proper response to natural or terrorist-caused outbreaks of infectious diseases. The recent availability of whole genome sequences of priority bacterial pathogens opens new diagnostic possibilities for identification of bacteria by retrieving their genomic or proteomic information. We describe a method for identification of bacteria based on tandem mass spectrometric (MS/MS) analysis of peptides derived from bacterial proteins.

View Article and Find Full Text PDF

A single-step method suitable for cellular fatty acid derivatization to picolinyl esters with the use of a pyrolyzer as a thermochemical micro-reactor was developed for whole bacterial cells. This reduced the preparation time from several hours to less than two minutes. In addition, the minimal bacterial mass required for analysis was reduced from several milligrams to micrograms.

View Article and Find Full Text PDF