Publications by authors named "Jacek Lipok"

Among various environmental factors, light is a crucial parameter necessary for the germination of some seeds. Seed germination is an important phase in the plant life cycle, when metabolic activity is resumed and reserves are mobilized to support initial plant development. Although all nutrients are extremely important for proper physiological and biochemical development of plants, phosphorus (P) seems to play a special role, as it is an essential component of all important structural and functional substances which compose the cells of plants.

View Article and Find Full Text PDF

This review aims to analyze L. as a potential raw material for the development of new health-promoting products (nutraceuticals, cosmetics, and pharmaceutical products). A lot of scientific publications were retrieved from the Scopus, PubMed, and Google Scholar databases which enable the study and generalization of the extraction procedures, key biologically active compounds of essential oil and extracts, biological properties, and therapeutic potential of , along with perspectives on the development of its dosage forms, including combinations of synthetic active substances and herbal preparations of .

View Article and Find Full Text PDF

In recent years, significant progress has been made in transdermal drug delivery systems, but there is still a search for enhancers that can improve the absorption of active substances through the . Although permeation enhancers have been described in the scientific literature, the use of naturally occurring substances in this role is still of particular interest, because they can offer a high level of safety of use, with a low risk of skin irritation, and high efficiency. In addition, these ingredients are biodegradable, easily available, and widely accepted by consumers due to the growing trust in natural compounds.

View Article and Find Full Text PDF

Cucumber is one of the most commonly produced vegetable crops. The greatest economic losses in the yields of these crops have resulted from fungal infections-powdery mildew and downy mildew. The action of fungicides not only affects the fungi, but can also lead to metabolic disorders in plants.

View Article and Find Full Text PDF

Although the spectrum of effective methods and techniques that allow determination of inorganic or total phosphorus is impressive, more precise analysis of these substances in plant tissues is not a routine or trivial task. The complexity of chemical composition of plant tissues treated as the analytical matrices is thought to be the main cause why there is no one answer, how appropriate phosphorus compounds may be determined qualitatively and quantitatively. Even if more advanced spectrophotometric measurements and classical variants of absorption (FAAS) or emission (ICP-AES/ ICP-OES) spectrometry techniques are used, it is necessary at first to isolate various forms of phosphorus from the matrix, and then to mineralize them prior the determination.

View Article and Find Full Text PDF

The [2-formyl-4-(trifluoromethyl)phenyl]boronic acid as well as its benzoxaborole and bis(benzoxaborole) derivatives were obtained and their properties studied. The 2-formyl compound displays an unusual structure in the crystalline state, with a significant twist of the boronic group, whereas in DMSO solution it tautomerizes with formation of a cyclic isomer. All the studied compounds exhibit relatively high acidity as well as a reasonable antimicrobial activity.

View Article and Find Full Text PDF

Phosphorus is one of the most important elements essential for all living beings. Plants accumulate and store phosphorous in various forms that have diverse physiological and biochemical functions. In this study, we determine and then examine the phosphorus profiles of seeds of plants belonging to different taxa based on extractable inorganic phosphates and organic forms of phosphorus.

View Article and Find Full Text PDF

Cyanobacteria are characterized by a very high tolerance to environmental factors. They are found in salt water, fresh water, thermal springs, and Antarctic waters. The wide spectrum of habitats suitable for those microorganisms is related to their particularly effective metabolism; resistance to extreme environmental conditions; and the need for only limited environmental resources such as water, carbon dioxide, simple inorganic salts, and light.

View Article and Find Full Text PDF

Benzoxaboroles emerged recently as molecules of high medicinal potential with Kerydin (Tavaborole) and Eucrisa (Crisaborole) currently in clinical practice as antifungal and anti-inflammatory drugs, respectively. Over a dozen of 3-amino benzoxaboroles, including Tavaborole's derivatives, have been synthetized and characterized in terms of their activity against as a model pathogenic fungus. The studied compounds broaden considerably the structural diversity of reported benzoxaboroles, enabling determination of the influence of the introduction of a heterocyclic amine, a fluorine substituent as well as the formyl group on antifungal activity of those compounds.

View Article and Find Full Text PDF

The dynamic increase in the commercial application of antimicrobial derivatives of boronic acids, and potential impact of their presence in aquatic systems, supports the necessity to study the toxicity of these substances towards microorganisms of crucial meaning in the environment. One example of the mentioned derivatives is tavaborole (5-fluoro-substituted benzoxaborole), a pharmaceutical agent with antifungal activity. Cyanobacteria were used as model organisms, which are photoautotrophic prokaryotes, as representative aquatic bacteria and photoautotrophs associated with the plant kingdom.

View Article and Find Full Text PDF

Several piperazine bis(benzoxaboroles) have been obtained both in solution as well as in the solid state. The environmentally friendly mechanochemical approach - hitherto not applied for the preparation of benzoxaboroles - was particularly beneficial in the case of two products afforded in low yields in solution. The studies showed high potential of the studied bis(fluorobenzoxaboroles) as antifungal agents, highlighting also the influence of the fluorine substituent position on their microbiological activity.

View Article and Find Full Text PDF

2-Formylphenylboronic acids display many interesting features, not only from synthetic but also from an application as well as structural points of view. 5-Trifluoromethyl-2-formyl phenylboronic acid has been synthesized and characterized in terms of its structure and properties. The presence of an electron-withdrawing substituent results in a considerable rise in the acidity in comparison with its analogues.

View Article and Find Full Text PDF

2-Formylphenylboronic acid and four isomeric fluoro-2-formylphenylboronic acids have been found active against a series of fungal strains: Aspergillus, Fusarium, Penicillium and Candida. The level of antifungal activity was evaluated by agar diffusion tests as well as the determination of minimum inhibitory concentrations (MICs) by serial dilution method. Among the tested compounds, 4-fluoro-2-formylphenylboronic acid - an analogue of the known antifungal drug Tavaborole (AN2690) - proved to be the most potent antifungal agent.

View Article and Find Full Text PDF

Halophilic and freshwater strains of cyanobacteria representing the Oscillatoriales, Nostocales, Chroococcales, and Synechococcales orders of Cyanophyta were examined to determine (i) the resistance of their cultures when suppressed by the presence of exogenous methoxylated and methylated derivatives of 2'-hydroxychalcone, (ii) morphological changes in cells treated with the tested chalcones and, most importantly, (iii) whether these photoautotrophic microorganisms transform chalcone derivatives in a structure- or strain-dependent manner. The growth of cyanobacterial cultures depended on chalcone derivatives and the strain; nevertheless, trends for correlations between these parameters are difficult to determine. The exposure of cyanobacteria to the tested chalcones revealed severe membrane damage that was consistent with the disruption of membrane integrity.

View Article and Find Full Text PDF

Cyanobacteria, also known as blue-green (micro)algae, are able to sustain many types of chemical stress because of metabolic adaptations that allow them to survive and successfully compete in a variety of ecosystems, including polluted ones. As photoautotrophic bacteria, these microorganisms synthesize aromatic amino acids, which are precursors for a large variety of substances that contain aromatic ring(s) and that are naturally formed in the cells of these organisms. Hence, the transformation of aromatic secondary metabolites by cyanobacteria is the result of the possession of a suitable "enzymatic apparatus" to carry out the biosynthesis of these compounds according to cellular requirements.

View Article and Find Full Text PDF

To verify the hypothesis that cyanobacteria naturally biosynthesising polyphenolic compounds possess an active enzymatic system that enables them to transform these substances, such an ability of the biocatalytic systems of whole cells of these biota was assessed for the first time. One halophilic strain and seven freshwater strains of cyanobacteria representing four of the five taxonomic orders of Cyanophyta were examined to determine the following: (i) whether they contain polyphenols, including flavonoids; (ii) the resistance of their cultures when suppressed by the presence of exogenous hydroxychalcones-precursors of flavonoid biosynthesis and (iii) whether these photoautotrophs can transform hydroxylated chalcones. All examined strains were found to contain polyphenols and flavonoids, and the growth of their cultures was inhibited in the presence of 2'-hydroxychalcone, 2″-hydroxychalcone and 4″-hydroxychalcone.

View Article and Find Full Text PDF

The biologically active compounds (fatty acids, pigments, phenolics, and flavonoid content) were studied in supercritical fluid extracts from the biomass of marine (, , , and their multi-species mixture) and freshwater () macroalgae. Different extraction techniques were used in order to compare differences in the biologically active compound composition of the macroalgal extracts. The results indicated that the saturated and unsaturated fatty acids ranged from C9:0 to C22:0.

View Article and Find Full Text PDF

The usefulness of glyphosate [-(phosphonomethyl)glycine] as a source of nutritive phosphorus for species of halophilic cyanobacteria has been postulated for years. Our results indicate a stimulating effect of glyphosate on the growth of four out of five examined freshwater species, (CCALA 007), (CCALA 055), cf. (CCALA 067) and cf.

View Article and Find Full Text PDF

Aminopolyphosphonates (AAPs) are commonly used industrial complexones of metal ions, which upon the action of biotic and abiotic factors undergo a breakdown and release their substructures. Despite the low toxicity of AAPs towards vertebrates, products of their transformations, especially those that contain phosphorus and nitrogen, can affect algal communities. To verify whether such chemical entities are present in water ecosystems, much effort has been made in developing fast, inexpensive, and reliable methods for analyzing phosphonates.

View Article and Find Full Text PDF

Background: Chalcones are the biogenetic precursors of all known flavonoids, which play an essential role in various metabolic processes in photosynthesizing organisms. The use of whole cyanobacteria cells in a two-step, light-catalysed regioselective bio-reduction of chalcone, leading to the formation of the corresponding dihydrochalcone, is reported. The prokaryotic microalgae cyanobacteria are known to produce phenolic compounds, including flavonoids, as natural components of cells.

View Article and Find Full Text PDF

The interactions between the plant-derived bioflavonoid, naringenin, and prokaryotic microalgae representatives (cyanobacteria), were investigated with respect to its influence on the growth and metabolic response of these microorganisms. To achieve reliable results, the growth of cyanobacteria was determined based on measurements of chlorophyll content, morphological changes were assessed through microscopic observations, and the chemical response of cells was determined using liquid and gas chromatography (HPLC; GC-FID). The results show that micromolar levels of naringenin stimulated the growth of cyanobacteria.

View Article and Find Full Text PDF

Cyanobacteria, the only prokaryotes capable of oxygenic photosynthesis, play a major role in carbon, nitrogen and phosphorus global cycling. Under conditions of increased P availability and nutrient loading, some cyanobacteria are capable of blooming, rapidly multiplying and possibly altering the ecological structure of the ecosystem. Because of their ability of using non-conventional P sources, these microalgae can be used for bioremediation purposes.

View Article and Find Full Text PDF

The polar regions (Arctic and Antarctic) constitute up to 14% of the biosphere and offer some of the coldest and most arid Earth's environments. Nevertheless several oxygenic phototrophs including some higher plants, mosses, lichens, various algal groups and cyanobacteria, survive that harsh climate and create the base of the trophic relationships in fragile ecosystems of polar environments. Ecosystems in polar regions are characterized by low primary productivity and slow growth rates, therefore they are more vulnerable to disturbance, than those in temperate regions.

View Article and Find Full Text PDF

5-Fluoro-2,1-benzoxaborol-1(3H)-ol, a potent antifungal drug also known as Tavaborole or AN2690, has been compared with its three isomers in terms of its activity against several fungi as well as pKa and multinuclear NMR characterization. The molecular and crystal structure of 6-fluoro-2,1-benzoxaborol-1(3H)-ol was determined and compared with that of AN2690.

View Article and Find Full Text PDF

Although information about the ability of some filamentous fungi to biodegrade organophosphonates is available, the knowledge about accompanying changes in fungal metabolism is very limited. The aim of our study was to determine the utilization of the chosen, structurally diverse aminophosphonates by Aspergillus terreus (Thom), in the context of the behaviour of this fungus while growing in unfavourable conditions, namely the lack of easily available phosphates. We found that all the studied compounds were utilized by fungus as nutritive sources of phosphorus, however, their effect on the production of fungal biomass depended on their structure.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionbce9kip6jnnufm2n6beb69q1ft1hisit): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once