Publications by authors named "Jacek Krol"

Adeno-associated viruses (AAVs) are intensively explored for gene therapies in general and have found promising applications for treating retina diseases. However, controlling the specificity (tropism) and delivery of AAVs to selected layers, cell types, and areas of the retina is a major challenge to further develop retinal gene therapies. Magnetic nanoparticles (MNPs) provide effective delivery platforms to magnetically guide therapeutics to target cells.

View Article and Find Full Text PDF

Cortical circuits are composed predominantly of pyramidal-to-pyramidal neuron connections, yet their assembly during embryonic development is not well understood. We show that mouse embryonic Rbp4-Cre cortical neurons, transcriptomically closest to layer 5 pyramidal neurons, display two phases of circuit assembly in vivo. At E14.

View Article and Find Full Text PDF

DDX3 is an RNA chaperone of the DEAD-box family that regulates translation. Ded1, the yeast ortholog of DDX3, is a global regulator of translation, whereas DDX3 is thought to preferentially affect a subset of mRNAs. However, the set of mRNAs that are regulated by DDX3 are unknown, along with the relationship between DDX3 binding and activity.

View Article and Find Full Text PDF

Human organoids recapitulating the cell-type diversity and function of their target organ are valuable for basic and translational research. We developed light-sensitive human retinal organoids with multiple nuclear and synaptic layers and functional synapses. We sequenced the RNA of 285,441 single cells from these organoids at seven developmental time points and from the periphery, fovea, pigment epithelium and choroid of light-responsive adult human retinas, and performed histochemistry.

View Article and Find Full Text PDF

Targeting genes to specific neuronal or glial cell types is valuable for both understanding and repairing brain circuits. Adeno-associated viruses (AAVs) are frequently used for gene delivery, but targeting expression to specific cell types is an unsolved problem. We created a library of 230 AAVs, each with a different synthetic promoter designed using four independent strategies.

View Article and Find Full Text PDF

Genetic engineering by viral infection of single cells is useful to study complex systems such as the brain. However, available methods for infecting single cells have drawbacks that limit their applications. Here we describe 'virus stamping', in which viruses are reversibly bound to a delivery vehicle-a functionalized glass pipette tip or magnetic nanoparticles in a pipette-that is brought into physical contact with the target cell on a surface or in tissue, using mechanical or magnetic forces.

View Article and Find Full Text PDF

Memory formation is a complex cognitive function regulated by coordinated synaptic and nuclear processes in neurons. In mammals, it is controlled by multiple molecular activators and suppressors, including the key signalling regulator, protein phosphatase 1 (PP1). Here, we show that memory control by PP1 involves the miR-183/96/182 cluster and its selective regulation during memory formation.

View Article and Find Full Text PDF

Neuronal circuit asymmetries are important components of brain circuits, but the molecular pathways leading to their establishment remain unknown. Here we found that the mutation of FRMD7, a gene that is defective in human congenital nystagmus, leads to the selective loss of the horizontal optokinetic reflex in mice, as it does in humans. This is accompanied by the selective loss of horizontal direction selectivity in retinal ganglion cells and the transition from asymmetric to symmetric inhibitory input to horizontal direction-selective ganglion cells.

View Article and Find Full Text PDF

Brain regions, such as the cortex and retina, are composed of layers of uniform thickness. The molecular mechanism that controls this uniformity is not well understood. Here we show that during mouse postnatal development the timed expression of Rncr4, a retina-specific long noncoding RNA, regulates the similarly timed processing of pri-miR-183/96/182, which is repressed at an earlier developmental stage by RNA helicase Ddx3x.

View Article and Find Full Text PDF

Cone photoreceptors, responsible for high-resolution and color vision, progressively degenerate following the death of rod photoreceptors in the blinding disease retinitis pigmentosa. Aït-Ali et al. describe a molecular mechanism by which RdCVF, a factor normally released by rods, controls glucose entry into cones, enhancing their survival.

View Article and Find Full Text PDF

The outer segments of cones serve as light detectors for daylight color vision, and their dysfunction leads to human blindness conditions. We show that the cone-specific disruption of DGCR8 in adult mice led to the loss of miRNAs and the loss of outer segments, resulting in photoreceptors with significantly reduced light responses. However, the number of cones remained unchanged.

View Article and Find Full Text PDF

The biogenesis of human microRNAs (miRNAs) includes two RNA cleavage steps in which the activities of the RNases Drosha and Dicer are involved. miRNAs of diverse lengths are generated from different genes, and miRNAs that are heterogeneous in length are produced from a single miRNA gene. We determined the solution structures of many miRNA precursors and analysed the structural basis of miRNA length diversity using a new measure: the weighted average length of diced RNA (WALDI).

View Article and Find Full Text PDF

MicroRNAs (miRNAs) are a large family of post-transcriptional regulators of gene expression that are approximately 21 nucleotides in length and control many developmental and cellular processes in eukaryotic organisms. Research during the past decade has identified major factors participating in miRNA biogenesis and has established basic principles of miRNA function. More recently, it has become apparent that miRNA regulators themselves are subject to sophisticated control.

View Article and Find Full Text PDF

Adaptation to different levels of illumination is central to the function of the retina. Here, we demonstrate that levels of the miR-183/96/182 cluster, miR-204, and miR-211 are regulated by different light levels in the mouse retina. Concentrations of these microRNAs were downregulated during dark adaptation and upregulated in light-adapted retinas, with rapid decay and increased transcription being responsible for the respective changes.

View Article and Find Full Text PDF

Chemical and enzymatic structural probes have been used for decades to obtain rapid and comprehensive information regarding the molecular architecture of various RNAs. Despite their widespread use, the sequence specificity of these RNA structural probing reagents has not yet been thoroughly characterized. In this study, we revisited the properties of commonly used structural probes such as Pb(II) ions, ribonuclease V1, ribonuclease T2, and the S1 and mung bean nucleases by testing them on highly regular triplet repeat sequences representing phosphodiester bonds with every possible combination of 3' and 5' adjacent nucleotides.

View Article and Find Full Text PDF

Tandem repeats of various trinucleotide motifs are present in the human transcriptome, but the functions of these regular sequences, which likely depend on the structures they form, are still poorly understood. To gain new insight into the structural and functional properties of triplet repeats in RNA, we have performed a biochemical structural analysis of the complete set of triplet repeat transcripts, each composed of a single sequence repeated 17 times. We show that these transcripts fall into four structural classes.

View Article and Find Full Text PDF

Several microRNAs (miRNAs), including liver-specific miR-122, have been implicated in the control of hepatitis C virus (HCV) RNA replication and its response to interferon (IFN) in human hepatoma cells. Our analysis of liver biopsies from subjects with chronic hepatitis C (CHC) undergoing IFN therapy revealed no correlation of miR-122 expression with viral load and markedly decreased pretreatment miR-122 levels in subjects who had no virological response during later IFN therapy; other investigated miRNAs showed only limited changes. These data have implications for the prospect of targeting miRNAs for CHC therapy.

View Article and Find Full Text PDF

Ribonuclease Dicer functions in cells to excise microRNAs from their precursors and process long double-stranded RNAs into short interfering RNAs. We show that transcripts containing long hairpin structures composed of CNG repeats are another class of Dicer targets. The cellular levels of transcripts from mutant genes involved in triplet repeat expansion diseases such as myotonic dystrophy type 1, Huntington's disease, and spinocerebellar ataxia type 1 are under Dicer control.

View Article and Find Full Text PDF

MicroRNA biogenesis occurs in several steps from their precursors having irregular hairpin structures. The highly variable architecture of these stem-and-loop structures, which have terminal loops of various sizes and diverse structure destabilizing motifs present in their stem sections, may strongly influence the process of microRNA liberation. In order to better understand this process, more details regarding its structural basis are required.

View Article and Find Full Text PDF

We have established the structures of 10 human microRNA (miRNA) precursors using biochemical methods. Eight of these structures turned out to be different from those that were computer-predicted. The differences localized in the terminal loop region and at the opposite side of the precursor hairpin stem.

View Article and Find Full Text PDF

One of the biggest surprises at the beginning of the 'post-genome era' was the discovery of numerous genes encoding microRNAs. They were found in genomes of such diverse organisms as Caenorhabditis elegans, Drosophila melanogaster, Arabidopsis thaliana, and Homo sapiens which implies their important role in multicellular life evolution. The number of microRNA genes is estimated to be nearly 1% of that of protein-coding genes.

View Article and Find Full Text PDF