Publications by authors named "Jacek Balcerzak"

The literature analysis did not indicate any studies on fluorination tests of carbon nanocomposite coatings doped with transition metals in a form of nanocrystalline metal carbide in amorphous carbon matrix (nc-MeC/a-C). As a model coating to investigate the effect of fluorination in a tetrafluoromethane (CF) atmosphere, a nanocomposite carbon coating doped with chromium-forming nanocrystals of chromium carbides in a-C matrix (nc-CrC/a-C) produced by magnetron sputtering from graphite targets and using a Pulse-DC type medium frequency power supply was chosen. After the deposition of the gradient chromium carbonitride (CrCN) adhesive sublayer, the fluorination of the main coating was conducted in a reactive mode in an (Ar + CF) atmosphere at various CF content.

View Article and Find Full Text PDF

In this study, we prepared CoO-based thin films deposited on Kanthal steel wire gauze meshes by plasma-enhanced chemical vapor deposition. X-ray photoelectron spectroscopy (XPS) analysis revealed a structure characterized by a combination of cobalt oxide and metallic cobalt embedded within a carbon matrix. Our primary objective was to gain insights into the roles of Co and CoO in CO hydrogenation reactions.

View Article and Find Full Text PDF

We report on investigating the structural and electronic properties of semiconducting and insulating layers produced in a process resembling percolation in a unique cold plasma fabrication method (plasma-enhanced chemical vapor deposition-PECVD). Amorphous carbon-tin films (Sn-C) produced from tetramethyl tin (TMT) with an acoustic-frequency glow discharge in a three-electrode reactor were investigated. The layers, after air exposure, oxidized to SnO/Sn-C.

View Article and Find Full Text PDF

The influence of various factors on the removal efficiency of selected pharmaceuticals by membrane filtration was investigated. Several commercial polymer membranes were used for nanofiltration (NF) from various manufacturers. The studies were conducted for ibuprofen (IBF), amoxicillin (AMX), diclofenac (DCF), tetracycline (TRC), salicylic acid (SA) and acetylsalicylic acid (ASA).

View Article and Find Full Text PDF

In recent years, more and more emphasis has been placed on the development and functionalization of metallic substrates for medical applications to improve their properties and increase their applicability. Today, there are many different types of approaches and materials that are used for this purpose. Our idea was based on a combination of a chemically synthesized Ag-SiO nanocomposite and the electrophoretic deposition approach on a NiTi-shape memory substrate.

View Article and Find Full Text PDF

Studies on the surface modification of commercial styrene-butadiene-styrene (SBS) rubber with different carbon black (CB) nanofiller content (10-80 parts per hundred parts of rubber (phr)) performed by low-pressure oxygen plasma are presented in this paper. The adhesion properties of the rubber were determined by the peel test for adhesive-bonded joints prepared with a water-based polyurethane (PU) adhesive. The chemical structure and morphology of the SBS rubber surface before and after plasma treatment were investigated by X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM), respectively.

View Article and Find Full Text PDF

Diamond-like carbon (DLC) coatings are well known as protective coatings for biomedical applications. Furthermore, the incorporation of different elements, such as silicon (Si), in the carbon matrix changes the bio-functionality of the DLC coatings. This has also been proven by the results obtained in this work.

View Article and Find Full Text PDF

A new approach for obtaining chitosan-carbon nanotube implants enriched with calcium ions in the form of tubular hydrogels is fostered. The intended application of the hydrogels is tissue engineering, especially peripheral nervous tissue regeneration. The fabrication method, based on an electrodeposition phenomenon, shows significant advantages over current solutions as implants can now be obtained rapidly at any required dimensions.

View Article and Find Full Text PDF

A new method for fabrication of chitosan-based hydrogel implants intended for peripheral nervous tissue regeneration was developed. The method is based on an electrodeposition phenomenon from a solution of chitosan and organic acid. In order to increase the mechanical strength of the implant, the solution was enriched with hydroxyapatite.

View Article and Find Full Text PDF