Publications by authors named "Jacco G Heldens"

Live attenuated influenza vaccines (LAIV) offer significant advantages over subunit or split inactivated vaccines to mitigate an eventual influenza pandemic, including simpler manufacturing processes and more cross-protective immune responses. Using an established reverse genetics (rg) system for wild-type (wt) A/Leningrad/134/1957 and cold-adapted (ca) A/Leningrad/134/17/1957 (Len17) master donor virus (MDV), we produced and characterized three rg H5N1 reassortant viruses carrying modified HA and intact NA genes from either A/Vietnam/1203/2004 (H5N1, VN1203, clade 1) or A/Egypt/321/2007 (H5N1, EG321, clade 2) virus. A mouse model of infection was used to determine the infectivity and tissue tropism of the parental wt viruses compared to the ca master donor viruses as well as the H5N1 reassortants.

View Article and Find Full Text PDF

RSV infections are a major burden in infants less than 3 months of age. Newborns and infants express a distinct immune system that is largely dependent on innate immunity and passive immunity from maternal antibodies. Antibodies can regulate immune responses against viruses through interaction with Fc gamma receptors leading to enhancement or neutralization of viral infections.

View Article and Find Full Text PDF

Background: Virus neutralizing antibodies against respiratory syncytial virus (RSV) are considered important correlates of protection for vaccine evaluation. The established plaque reduction assay is time consuming, labor intensive and highly variable.

Methods: Here, a neutralization assay based on a modified RSV strain expressing the green fluorescent protein in combination with automated detection and quantification of plaques is described.

View Article and Find Full Text PDF

Recently we reported that reacetylation of N,N,N-trimethyl chitosan (TMC) reduced the adjuvant effect of TMC in mice after intranasal (i.n.) administration of whole inactivated influenza virus (WIV) vaccine.

View Article and Find Full Text PDF

Continued H5N1 virus infection in humans highlights the need for vaccine strategies that provide cross-clade protection against this rapidly evolving virus. We report a comparative evaluation in ferrets of the immunogenicity and cross-protective efficacy of isogenic mammalian cell-grown, live attenuated influenza vaccine (LAIV) and adjuvanted, whole-virus, inactivated influenza vaccine (IIV), produced from a clade 1 H5N1 6:2 reassortant vaccine candidate (caVN1203-Len17rg) based on the cold-adapted A/Leningrad/134/17/57 (H2N2) master donor virus. Two doses of LAIV or IIV provided complete protection against lethal homologous H5N1 virus challenge and a reduction in virus shedding and disease severity after heterologous clade 2.

View Article and Find Full Text PDF

Background: Chikungunya virus (CHIKV) is a mosquito-borne, arthrogenic Alphavirus that causes large epidemics in Africa, South-East Asia and India. Recently, CHIKV has been transmitted to humans in Southern Europe by invading and now established Asian tiger mosquitoes. To study the processing of envelope proteins E1 and E2 and to develop a CHIKV subunit vaccine, C-terminally his-tagged E1 and E2 envelope glycoproteins were produced at high levels in insect cells with baculovirus vectors using their native signal peptides located in CHIKV 6K and E3, respectively.

View Article and Find Full Text PDF

Trivalent live attenuated influenza vaccines whose type A components are based on cold-adapted A/Leningrad/134/17/57 (H2N2) (caLen17) master donor virus (MDV) have been successfully used in Russia for decades to control influenza. The vaccine virus comprises hemagglutinin and neuraminidase genes from the circulating viruses and the remaining six genes from the MDV. The latter confer temperature-sensitive (ts) and attenuated (att) phenotypes.

View Article and Find Full Text PDF

Demonstration of the absence of neurovirulent properties of reassortant viruses contained in live attenuated influenza vaccine (LAIV) is a regulatory requirement. A mouse model was used to detect neurovirulent properties of the cold-adapted, temperature-sensitive and attenuated influenza master donor viruses (MDVs) A/Leningrad/134/17/57 (H2N2) and B/USSR/60/69 and derived reassortant influenza viruses. A/NWS/33 (H1N1), which is known to be neurovirulent in mice, was used as a positive control.

View Article and Find Full Text PDF

The cold-adapted (ca) and temperature-sensitive (ts) influenza master donor virus (MDV) B/USSR/60/69 was derived from its wild-type parental virus after successive passages in eggs at 32 degrees C and 25 degrees C. This strain is currently in use for preparing reassortant influenza B vaccine viruses which are used in the Russian trivalent live attenuated influenza vaccine. Vaccine viruses are obtained by classical reassortment of MDV and a currently circulating wild-type virus.

View Article and Find Full Text PDF

The aim of this study was to assess the influence of structural properties of N,N,N-trimethyl chitosan (TMC) on its adjuvanticity. Therefore, TMCs with varying degrees of quaternization (DQ, 22-86%), O-methylation (DOM, 0-76%) and acetylation (DAc 9-54%) were formulated with whole inactivated influenza virus (WIV). The formulations were characterized physicochemically and evaluated for their immunogenicity in an intranasal (i.

View Article and Find Full Text PDF

A meeting was held at NIBSC, UK in July 2007 to discuss the implications of progress in the use of cell culture systems for the manufacture of vaccines against influenza. Issues discussed included the effect of using eggs and different cell types in strain selection, development of seed viruses to be used in production and the nature of the reagents to be used in determining vaccine potency. Future studies to progress the field were reviewed.

View Article and Find Full Text PDF

Purpose: The purpose of this study was the development and physicochemical and immunological characterization of intranasal (i.n.) vaccine formulations of whole inactivated influenza virus (WIV) coated with N,N,N-trimethyl chitosan (TMC).

View Article and Find Full Text PDF