Engaging in phone conversations or other cognitively challenging tasks while driving detrimentally impacts cognitive functions and has been associated with increased risk of accidents. Existing EEG methods have been shown to differentiate between load and no load, but not between different levels of cognitive load. Furthermore, it has not been investigated whether EEG measurements of load can be used to predict safety outcomes in critical events.
View Article and Find Full Text PDFMany animals rely on visual camouflage to avoid detection and increase their chances of survival. Edge disruption is commonly seen in the natural world, with animals evolving high-contrast markings that are incongruent with their real body outline in order to avoid recognition. While many studies have investigated how camouflage properties influence viewer performance and eye movement in predation search tasks, researchers in the field have yet to consider how camouflage may directly modulate visual attention and object processing.
View Article and Find Full Text PDFWhen humans share space in road traffic, as drivers or as vulnerable road users, they draw on their full range of communicative and interactive capabilities. Much remains unknown about these behaviors, but they need to be captured in models if automated vehicles are to coexist successfully with human road users. Empirical studies of human road user behavior implicate a large number of underlying cognitive mechanisms, which taken together are well beyond the scope of existing computational models.
View Article and Find Full Text PDFTo steer a vehicle, humans must process incoming signals that provide information about their movement through the world. These signals are used to inform motor control responses that are appropriately timed and of the correct magnitude. However, the perceptual mechanisms determining how drivers process visual information remain unclear.
View Article and Find Full Text PDFBackground: A combination of green tea, rhodiola and magnesium with B vitamins has previously been reported to significantly increase EEG resting state theta, attenuate subjective stress, anxiety and mood disturbance, and heighten subjective and autonomic arousal under acute psychosocial laboratory stress. Here we examine the capacity of green tea and rhodiola extract administered in combination or in isolation with magnesium and B vitamins to moderate spectral brain activity during attentional task performance under stress.
Materials And Methods: One-hundred moderately stressed adults received oral supplementation of (i) Mg + B vitamins + green tea + rhodiola; (ii) Mg + B vitamins + rhodiola; (iii) Mg + B vitamins + green tea; or (iv) placebo, in a double-blind, randomised, placebo-controlled, parallel-group design (Clinicaltrials.
Vehicle control by humans is possible because the central nervous system is capable of using visual information to produce complex sensorimotor actions. Drivers must monitor errors and initiate steering corrections of appropriate magnitude and timing to maintain a safe lane position. The perceptual mechanisms determining how a driver processes visual information and initiates steering corrections remain unclear.
View Article and Find Full Text PDFEvidence accumulation models provide a dominant account of human decision-making, and have been particularly successful at explaining behavioral and neural data in laboratory paradigms using abstract, stationary stimuli. It has been proposed, but with limited in-depth investigation so far, that similar decision-making mechanisms are involved in tasks of a more embodied nature, such as movement and locomotion, by directly accumulating externally measurable sensory quantities of which the precise, typically continuously time-varying, magnitudes are important for successful behavior. Here, we leverage collision threat detection as a task which is ecologically relevant in this sense, but which can also be rigorously observed and modelled in a laboratory setting.
View Article and Find Full Text PDFBackground: Magnesium (Mg), green tea and rhodiola extracts have, in isolation, been shown to possess stress and anxiety relieving effects. Green tea and rhodiola have been shown to modulate EEG oscillatory brain activity associated with relaxation and stress perception. The combined capacity of these ingredients to confer protective effects under conditions of acute stress has yet to be examined.
View Article and Find Full Text PDFThe aim of this systematic review was to evaluate the effect of immersive and non-immersive interactive virtual reality on pain perception in patients with a clinical pain condition. The following databases were searched from inception: Medline (Ovid), PsychInfo, CINAHL, Cochrane library and Web of Science. Two reviewers screened reports and extracted the data.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2019
Climate-induced changes in spatial and temporal occurrence of species, as well as species traits such as body size, each have the potential to decouple symbiotic relationships. Past work has focused primarily on direct interactions, particularly those between predators and prey and between plants and pollinators, but studies have rarely demonstrated significant fitness costs to the interacting, coevolving organisms. Here, we demonstrate that changing phenological synchrony in the latter part of the 20th century has different fitness outcomes for the actors within a Batesian mimicry complex, where predators learn to differentiate harmful "model" organisms (stinging Hymenoptera) from harmless "mimics" (hoverflies, Diptera: Syrphidae).
View Article and Find Full Text PDFThis paper describes longitudinal testing of two Semantic Dementia (SD) cases. It is common for patients with SD to present with deficits in reading aloud irregular words (i.e.
View Article and Find Full Text PDFBackground And Objectives: Developmental coordination disorder (DCD) is a prevalent childhood movement disorder, impacting the ability to perform movement skills at an age appropriate level. Although differences in grey matter (GM) volumes have been found in related developmental disorders, no such evidence has been linked with DCD to date. This cross-sectional study assessed structural brain differences in children with and without DCD.
View Article and Find Full Text PDFJ Exp Psychol Hum Percept Perform
November 2016
Responding to changes in the road ahead is essential for successful driving. Steering control can be modeled using 2 complementary mechanisms: guidance control (to anticipate future steering requirements) and compensatory control (to stabilize position-in-lane). Drivers seem to rapidly sample the visual information needed for steering using active gaze patterns, but the way in which this perceptual information is combined remains unclear.
View Article and Find Full Text PDFThe basis of motor learning involves decomposing complete actions into a series of predictive individual components that form the whole. The present fMRI study investigated the areas of the human brain important for oculomotor short-term learning, by using a novel sequence learning paradigm that is equivalent in visual and temporal properties for both saccades and pursuit, enabling more direct comparisons between the oculomotor subsystems. In contrast with previous studies that have implemented a series of discrete ramps to observe predictive behaviour as evidence for learning, we presented a continuous sequence of interlinked components that better represents sequences of actions.
View Article and Find Full Text PDFThe aim of this study was to reveal cortical areas that may contribute to the movement difficulties seen in children with Developmental Coordination Disorder (DCD). Specifically, we hypothesized that there may be a deficit in the mirror neuron system (MNS), a neural system that responds to both performed and observed actions. Using functional MRI, 14 boys with DCD (x=10.
View Article and Find Full Text PDFAn extensive series of physiological studies in macaques shows the existence of neurons in three multisensory cortical regions, dorsal medial superior temporal area (MSTd), ventral intraparietal area (VIP), and visual posterior sylvian area (VPS), that are tuned for direction of self-motion in both visual and vestibular modalities. Some neurons have congruent direction preferences, suggesting integration of signals for optimum encoding of self-motion trajectory; others have opposite preferences and could be used for discounting retinal motion that arises from perceptually irrelevant head motion. Whether such a system exists in humans is unknown.
View Article and Find Full Text PDFThis study examined brain activation in children with developmental coordination disorder (DCD) to reveal areas that may contribute to poor movement execution and/or abundant motor overflow. Using functional magnetic resonance imaging, 13 boys with DCD (mean age = 9.6 years ±0.
View Article and Find Full Text PDFRecent reports offer contrasting views on whether or not the use of online visual control is impaired in individuals with developmental coordination disorder (DCD). This study explored the optimal temporal basis for processing and using visual information in adolescents and young adults with DCD. Participants were 22 adolescents and young adults (12 males and 10 females; M = 19 years, SD = 3).
View Article and Find Full Text PDFVisual control of locomotion typically involves both detection of current egomotion as well as anticipation of impending changes in trajectory. To determine if there are distinct neural systems involved in these aspects of steering control we used a slalom paradigm, which required participants to steer around objects in a computer simulated environment using a joystick. In some trials the whole slalom layout was visible (steering "preview" trials) so planning of the trajectory around future waypoints was possible, whereas in other trials the slalom course was only revealed one object at a time (steering "near" trials) so that future planning was restricted.
View Article and Find Full Text PDFDetecting a looming object and its imminent collision is imperative to survival. For most humans, it is a fundamental aspect of daily activities such as driving, road crossing and participating in sport, yet little is known about how the brain both detects and responds to such stimuli. Here we use functional magnetic resonance imaging to assess neural response to looming stimuli in comparison with receding stimuli and motion-controlled static stimuli.
View Article and Find Full Text PDFJ Exp Psychol Hum Percept Perform
December 2010
Locomoting through the environment typically involves anticipating impending changes in heading trajectory in addition to maintaining the current direction of travel. We explored the neural systems involved in the "far road" and "near road" mechanisms proposed by Land and Horwood (1995) using simulated forward or backward travel where participants were required to gauge their current direction of travel (rather than directly control it). During forward egomotion, the distant road edges provided future path information, which participants used to improve their heading judgments.
View Article and Find Full Text PDFUnlabelled: SINGLE CASE: DT is a savant with exceptional abilities in numerical memory and mathematical calculations. DT also has an elaborate form of synaesthesia for visually presented digits. Further more, DT also has Asperger syndrome (AS).
View Article and Find Full Text PDFNeuropsychologia
January 2008
Systemizing ability exists on a spectrum, with a high systemizing style meaning proficiency in analysing the rules of a system, to predict how that system works. This study uses fMRI to investigate a spectrum of low to high systemizing, to assess whether individuals with a high systemizing style exhibit an attentional bias towards local details. This is the first study to test for the neural correlates of systemizing.
View Article and Find Full Text PDF