The Gemmatimonadota phylum has been widely detected in diverse natural environments, yet their specific ecological roles in many habitats remain poorly investigated. Similarly, the Candidatus ARS69 phylum has been identified only in a few habitats, and literature on their metabolic functions is relatively scarce. In the present study, we investigated the ecological significance of phyla Ca.
View Article and Find Full Text PDFThe frosty polar environment houses diverse habitats mostly driven by psychrophilic and psychrotolerant microbes. Along with traditional cultivation methods, next-generation sequencing technologies have become common for exploring microbial communities from various extreme environments. Investigations on glaciers, ice sheets, ponds, lakes, etc.
View Article and Find Full Text PDFWorld J Microbiol Biotechnol
December 2023
The thawing of snow and sea ice produces distinctive melt ponds on the surface of the Arctic sea ice, which covers a significant portion of the surface sea ice during summer. Melt-pond salinity impacts heat transfer to the ice below and the melting rate. It is widely known that melt ponds play a significant role in heat fluxes, ice-albedo feedback, and sea-ice energy balance.
View Article and Find Full Text PDFLand-terminating glaciers are retreating globally, resulting in the expansion of the ice-free glacier forelands (GFs). These GFs act as a natural laboratory to study microbial community succession, soil formation, and ecosystem development. Here, we have employed gene-centric and genome-resolved metagenomic approaches to disseminate microbial diversity, community structure, and their associated biogeochemical processes involved in the carbon, nitrogen, and sulfur cycling across three GF ecosystems.
View Article and Find Full Text PDFArchaea constitute a substantial fraction of marine microbial biomass and play critical roles in the biogeochemistry of oceans. However, studies on their distribution and ecology in the Arctic Ocean are relatively scarce. Here, we studied the distributions of archaea and archaeal ammonia monooxygenase (amoA) gene in the western Arctic Ocean, using the amplicon sequencing approach from the sea surface to deep waters up to 3040 m depth.
View Article and Find Full Text PDFThe study assessed the Cochin estuary and adjacent coastal Arabian Sea for their seasonal variation in nitrate (NO) and ammonium (NH) uptake rates by total and nano + picoplankton using the N tracer technique. The results suggested that the NO and NH uptake rates in the Cochin estuary are higher than those in the adjacent coastal Arabian Sea. NO and NH uptake rates in the nearshore stations in the off Cochin station were high, indicating the influence of the eutrophic estuary.
View Article and Find Full Text PDFNitrogen-fixing or diazotrophic microbes fix atmospheric nitrogen (N) to ammonia (NH) using nitrogenase enzyme and play a crucial role in regulating marine primary productivity and carbon dioxide sequestration. However, there is a lack of information about the diversity, structure, and environmental regulations of the diazotrophic communities in the high Arctic fjords, such as Kongsfjorden. Here, we employed nifH gene sequencing to clarify variations in composition, community structure, and assembly mechanism among the diazotrophs of the salinity-driven stratified waters of Kongsfjorden.
View Article and Find Full Text PDFThe environmental variations and their interactions with the biosphere are vital in the Arctic Ocean during the summer sea-ice melting period in the current scenario of climate change. Hence, we analysed the vertical distribution of bacterial and archaeal communities in the western Arctic Ocean from sea surface melt-ponds to deep water up to a 3040 m depth. The distribution of microbial communities showed a clear stratification with significant differences among different water depths, and the water masses in the Arctic Ocean - surface mixed layer, Atlantic water mass and deep Arctic water - appeared as a major factor explaining their distribution in the water column.
View Article and Find Full Text PDFNitrogen fixation and its ecological regulation are poorly understood in the tropical estuaries, which are highly influenced by anthropogenic disturbances. In this study, we investigated the role of nutrient stoichiometry in the diversity, abundance and activity of N-fixing bacterial community and their seasonal variations in the water column of a tropical eutrophic estuary (Cochin estuary). The N fixation rates in the estuary ranged from 0.
View Article and Find Full Text PDFDiversity and distribution pattern of ammonia-oxidizing archaea (AOA) were studied across a salinity gradient in the water column of Cochin Estuary (CE), a tropical monsoonal estuary along the southeast Arabian Sea. The water column of CE was found to be nutrient rich with high bacterial (3.7-6.
View Article and Find Full Text PDFIn the present study, we report the nitrogen fixing potential of heterotrophic diazotrophs isolated from a tropical estuary and adjacent coastal sea. Results of the study revealed that most of the species that are capable of fixing nitrogen in the study area belongs to the genus Bacillus. The isolates from the estuary showed maximum homology with Bacillus megaterium, B.
View Article and Find Full Text PDFWorld J Microbiol Biotechnol
February 2017
Microorganisms play a significant role in biogeochemical cycles, especially in the benthic and pelagic ecosystems. Role of environmental parameters in regulating the diversity, distribution and physiology of these microorganisms in tropical marine environment is not well understood. In this study, we have identified dinitrogen (N) fixing bacterial communities in the sediments by constructing clone libraries of nitrogenase (nifH) gene from four different stations in the Cochin estuary, along the southeastern Arabian Sea.
View Article and Find Full Text PDF