Publications by authors named "Jaanus Burk"

Assessing the risks of nanomaterials/nanoparticles (NMs/NPs) under various environmental conditions requires a more systematic approach, including the comparison of effects across many NMs with identified different but related characters/descriptors. Hence, there is an urgent need to provide coherent (eco)toxicological datasets containing comprehensive toxicity information relating to a diverse spectra of NPs characters. These datasets are test benches for developing holistic methodologies with broader applicability.

View Article and Find Full Text PDF

A literature curated dataset containing 24 distinct metal oxide (MeO) nanoparticles (NPs), including 15 physicochemical, structural and assay-related descriptors, was enriched with 62 atomistic computational descriptors and exploited to produce a robust and validated in silico model for prediction of NP cytotoxicity. The model can be used to predict the cytotoxicity (cell viability) of MeO NPs based on the colorimetric lactate dehydrogenase (LDH) assay and the luminometric adenosine triphosphate (ATP) assay, both of which quantify irreversible cell membrane damage. Out of the 77 total descriptors used, 7 were identified as being significant for induction of cytotoxicity by MeO NPs.

View Article and Find Full Text PDF

In the search for novel tools to combat cancer, nanoparticles (NPs) have attracted a lot of attention. Recently, the controlled release of cancer-cell-killing metal ions from doped NPs has shown promise, but fine tuning of dissolution kinetics is required to ensure specificity and minimize undesirable toxic side-effects. Theoretical tools to help in reaching a proper understanding and finally be able to control the dissolution kinetics by NP design have not been available until now.

View Article and Find Full Text PDF

The development and implementation of safe-by-design strategies is key for the safe development of future generations of nanotechnology enabled products. The safety testing of the huge variety of nanomaterials that can be synthetized is unfeasible due to time and cost constraints. Computational modeling facilitates the implementation of alternative testing strategies in a time and cost effective way.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session3gh53j6vd3381fo9hh6pb6ed3spdpm4b): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once