Publications by authors named "Jaanis Juhanson"

Mining activities are increasingly recognized for contributing to nitrogen (N) pollution and possibly also to emissions of the greenhouse gas nitrous oxide (NO) due to undetonated, N-based explosives. A woodchip denitrifying bioreactor, installed to treat nitrate-rich leachate from waste rock dumps in northern Sweden, was monitored for two years to determine the spatial and temporal distribution of microbial communities, including the genetic potential for different N transformation processes, in pore water and woodchips and how this related to reactor N removal capacity. About 80 and 65 % of the nitrate was removed during the first and second operational year, respectively.

View Article and Find Full Text PDF

Soil microbial diversity and community composition are shaped by various factors linked to land management, topographic position, and vegetation. To study the effects of these drivers, we characterized fungal and bacterial communities from bulk soil at four soil depths ranging from the surface to below the rooting zone of two Swedish grasslands with differing land-use histories, each including both an upper and a lower catenary position. We hypothesized that differences in plant species richness and plant functional group composition between the four study sites would drive the variation in soil microbial community composition and correlate with microbial diversity, and that microbial biomass and diversity would decrease with soil depth following a decline in resource availability.

View Article and Find Full Text PDF

Due to global warming, shorter ice cover duration might drastically affect the ecology of lakes currently undergoing seasonal surface freezing. High-mountain lakes show snow-rich ice covers that determine contrasting conditions between ice-off and ice-on periods. We characterized the bacterioplankton seasonality in a deep high-mountain lake ice-covered for half a year.

View Article and Find Full Text PDF

Global water supplies are threatened by climate changes and the expansion of urban areas, which have led to an increasing interest in nature-based solutions for water reuse and reclamation. Reclaimed water is a possible resource for recharging aquifers, and the addition of an organic reactive barrier has been proposed to improve the removal of pollutants. There has been a large focus on organic pollutants, but less is known about multifunctional barriers, that is, how barriers also remove nutrients that threaten groundwater ecosystems.

View Article and Find Full Text PDF

High levels of nitrogen originating from blasting operations, for example at mining sites or quarries, risk contaminating water bodies through leaching from waste rock dumps. Woodchip bioreactors can be a simple and cost-effective way of reducing nitrate concentrations in the leachate. In this study we investigated how bottle sedge, barley straw, and pine woodchips used as electron donors for denitrification influenced microbial community composition and nitrate removal in lab-scale bioreactors during 270 days.

View Article and Find Full Text PDF
Article Synopsis
  • Explosives used in mining lead to reactive nitrogen that enters surrounding waters, and existing pond systems at mines could help mitigate this through denitrification.
  • A study found that while microbial communities differed in effectiveness, both tailings and clarification pond sediments showed similar denitrification potential, which could be improved with carbon amendments like algae and acetate.
  • The introduction of algae not only enhanced nitrate removal but also increased greenhouse gas emissions, highlighting the delicate balance between effective nitrogen removal and unintended environmental impacts.
View Article and Find Full Text PDF

High-altitude and alpine areas are predicted to experience rapid and substantial increases in future temperature, which may have serious impacts on soil carbon, nutrient and soil fauna. Here we report the impact of 20 years of experimental warming on soil properties and soil mites in three contrasting plant communities in alpine/subarctic Sweden. Long-term warming decreased juvenile oribatid mite density, but had no effect on adult oribatids density, total mite density, any major mite group or the most common species.

View Article and Find Full Text PDF

Ecosystems worldwide are facing habitat homogenization due to human activities. Although it is commonly proposed that such habitat homogenization can have negative repercussions for ecosystem functioning, this question has yet to receive explicit scientific attention. We expand on the framework for evaluating the functional consequences of biodiversity loss by scaling up from the level of species to the level of the entire habitats.

View Article and Find Full Text PDF

The coastal waters of the Baltic Sea are constantly threatened by oil spills, due to the extensive transportation of oil products across the sea. To characterise the hydrocarbon-degrading bacterial community of this marine area, microcosm experiments on diesel fuel, crude oil and shale oil were performed. Analysis of these microcosms, using alkane monooxygenase (alkB) and 16S rRNA marker genes in PCR-DGGE experiments, demonstrated that substrate type and concentration strongly influence species composition and the occurrence of alkB genes in respective oil degrading bacterial communities.

View Article and Find Full Text PDF

Plasmids are mobile genetic elements that provide their hosts with many beneficial traits including in some cases the ability to degrade different aromatic compounds. To fulfill the knowledge gap regarding catabolic plasmids of the Baltic Sea water, a total of 209 biodegrading bacterial strains were isolated and screened for the presence of these mobile genetic elements. We found that both large and small plasmids are common in the cultivable Baltic Sea bacterioplankton and are particularly prevalent among bacterial genera Pseudomonas and Acinetobacter.

View Article and Find Full Text PDF

A long-term field experiment was carried out to estimate the efficiency of bioaugmentation in combination with phytoremediation for oil shale chemical industry solid waste dump area remediation. Soil samples for microbiological and chemical analysis were collected during 3 years after bacterial biomass application. Microbial communities in soil samples were analysed using both culture-based and molecular methods.

View Article and Find Full Text PDF

The aim of the current article is to give an overview about microbial communities and their functioning but also about factors affecting microbial activity in the three most common types (surface flow and two types of sub-surface flow) of constructed wetlands. The paper reviews the community composition and structural diversity of the microbial biomass, analyzing different aspects of microbial activity with respect to wastewater properties, specific wetland type, and environmental parameters. A brief introduction about the application of different novel molecular techniques for the assessment of microbial communities in constructed wetlands is also given.

View Article and Find Full Text PDF

Microbial community structure was assessed in a horizontal subsurface flow planted sand filter treating domestic wastewater with molecular and culture-based methods. The diversity and spatial distribution of the microbial community was investigated using a PCR-DGGE (eubacterial and archaeal primers, ammonia-oxidizing bacteria, and ammonium monooxygenase specific primers), and spread plate and MPN counts. Significant differences were found in the spatial distribution of the microbial community structure.

View Article and Find Full Text PDF