In this paper, structure-properties relationship between ionically crosslinked pectin hydrogels and aerogels is drawn, by focusing the study on the small amount of added cationic crosslinkers. Through this strategy and by coupling results from rheology and nanostructure of the gels provided by small-angle X-ray scattering, the early stages of the formation of ionic crosslinking junction zones are observed. Furthermore, as a major predictor of the samples' ability to resist linear shrinkage upon solvent exchange and supercritical drying processes, the gel-state (and thus rheological properties) emerges as a key element.
View Article and Find Full Text PDFThis study presents a comprehensive analysis encompassing melt blending, characterization, life cycle assessment (LCA), and 3D printing of a range of polylactic acid (PLA)/starch biocomposites, with starch content varying from 0 to 50 wt%. To enhance compatibility between the starch particles and the PLA matrix, we utilized a solvent-free method to graft N-octadecyl isocyanate (ODI) molecules onto the surface of the starch particles, resulting in ODI-g-starch, which yielded several improved properties. Notably, toughness and elongation at break improved by approximately 170 % and 300 %, respectively.
View Article and Find Full Text PDFIn this study, the possibility of using a natural polysaccharide, pectin, in a novel function as a photothermal material was investigated by fabricating a Pectin/Polyethylene glycol (PEG)/Poly(methyl methacrylate) (PMMA) composite via the infiltration of PEG/PMMA polymer mixture into freeze-casted pectin cryogel template. The Pectin/PEG/PMMA composite has high latent heat of 48 J/g, excellent UV blocking ability, and tailorable transmittance as well as capacity to energy storage via photothermal heating to the melting point of PEG under sunlight. The photothermal effect can be enhanced with the increase of pectin concentration and irradiation intensity.
View Article and Find Full Text PDFA bio-inspired approach to fabricate robust superhydrophobic (SHB) surfaces with anisotropic properties replicated from a leek leaf is presented. The polydimethylsiloxane (PDMS) replica surfaces exhibit anisotropic wetting, anti-icing, and light scattering properties due to microgrooves replicated from leek leaves. Superhydrophobicity is achieved by a novel modified candle soot (CS) coating that mimics leek's epicuticular wax.
View Article and Find Full Text PDFThe slow photon effect in inverse opal photonic crystals represents a promising approach to manipulate the interactions between light and matter through the design of material structures. This study introduces a novel ordered inverse opal photonic crystal (IOPC) sensitized with perovskite quantum dots (PQDs), demonstrating its efficacy for efficient visible-light-driven H generation via water splitting. The rational structural design contributes to enhanced light harvesting.
View Article and Find Full Text PDFThis work aims to understand how nanocellulose (NC) processing can modify the key characteristics of NC films to align with the main requirements for high-performance optoelectronics. The performance of these devices relies heavily on the light transmittance of the substrate, which serves as a mechanical support and optimizes light interactions with the photoactive component. Critical variables that determine the optical and mechanical properties of the films include the morphology of cellulose nanofibrils (CNF), as well as the concentration and turbidity of the respective aqueous suspensions.
View Article and Find Full Text PDFThis study introduces the development of a thermally responsive shape-morphing fabric using low-melting-point polyamide shape memory actuators. To facilitate the blending of biomaterials, we report the synthesis and characterization of a biopolyamide with a relatively low melting point. Additionally, we present a straightforward and solvent-free method for the compatibilization of starch particles with the synthesized biopolyamide, aiming to enhance the sustainability of polyamide and customize the actuation temperature.
View Article and Find Full Text PDFIn this contribution, dynamic photoinduced wrinkle erasure enabled by photomechanical changes in supramolecular polymer-azo complexes was characterized via confocal microscopy. Different photoactive molecules, disperse yellow 7 (DY7) and 4,4'-dihydroxyazobenzene (DHAB), were compared to 4-hydroxy-4'-dimethylaminoazobenzene (OH-azo-DMA). The characteristic erasure times of wrinkles were quickly assessed by using an image processing algorithm.
View Article and Find Full Text PDFActive fabrics, responding autonomously to environmental changes, are the "Holy Grail" of the development of smart textiles. Liquid crystal elastomers (LCEs) promise to be the base materials for large-stroke reversible actuation. The mechanical behavior of LCEs matches almost exactly the human muscle.
View Article and Find Full Text PDFPotato virus A (PVA) is a plant-infecting RNA virus that produces flexible particles with a high aspect ratio. PVA has been investigated extensively for its infection biology, however, its potential to serve as a nanopatterning platform remains unexplored. Here, we study the liquid crystal and interfacial self-assembly behavior of PVA particles.
View Article and Find Full Text PDFCellulose nanocrystal (CNC) suspensions can self-assemble into chiral nematic films upon the slow evaporation of water. These films are brittle, as indicated by their fracturing instead of plastically deforming once they are fully elastically deformed. This aspect can be mediated to some extent by plasticizing additives, such as glucose and glycerol, however, few reports consider more than one additive at a time or address the influence of additive content on the homogeneity of the self-assembled structure.
View Article and Find Full Text PDFUltra-long silver nanowires (AgNWs) with an aspect ratio of >2000 were prepared by the hydrothermal synthesis method. The influence of reaction time (4-32 h), reaction temperature (150-180 °C), polyvinylpyrrolidone (PVP) molecular weight (10 000-1 300 000 g mol), PVP concentration (50-125 mM), glucose concentration (5.6-22.
View Article and Find Full Text PDFHigh-performance wearable sensors, especially resistive pressure and strain sensors, have shown to be promising approaches for the next generation of health monitoring. Besides being skin-friendly and biocompatible, the required features for such types of sensors are lightweight, flexible, and stretchable. Cellulose-based materials in their different forms, such as air-porous materials and hydrogels, can have advantageous properties to these sensors.
View Article and Find Full Text PDFOsmotic dehydration (OD) was introduced as a method to reproducibly tune the water content and porosity of cellulose nanofiber (CNF) hydrogels. The hierarchical porosity was followed by electron microscopy (pores with a >100 μm diameter) and thermoporosimetry (mesopores), together with mechanical testing, in hydrogels with solid contents ranging from 0.7 to 12 wt %.
View Article and Find Full Text PDFIn addition to renewability and abundance, nanocellulose materials have tremendous (and variable) properties for different applications, ranging from bulk applications, such as paper and packaging reinforcement, to emerging high added-value applications, such as substrates for optoelectronics. Lignocellulosic biomass from agricultural and industrial waste sources is readily available and shows great promise as an inexpensive and sustainable raw material for nanocellulose production. However, the understanding of the potential of using non-wood based biowaste sources is not established and systematic comparisons of versatile agricultural and industrial waste sources can elucidate this complex topic.
View Article and Find Full Text PDFThis review addresses the reconstruction of structural plant components (cellulose, lignin, and hemicelluloses) into materials displaying advanced optical properties. The strategies to isolate the main building blocks are discussed, and the effects of fibrillation, fibril alignment, densification, self-assembly, surface-patterning, and compositing are presented considering their role in engineering optical performance. Then, key elements that enable lignocellulosic to be translated into materials that present optical functionality, such as transparency, haze, reflectance, UV-blocking, luminescence, and structural colors, are described.
View Article and Find Full Text PDFAs part of continuing efforts to deepen the understanding of photo-induced mass transport in azo-containing polymers, we compared the diffraction efficiency (DE) during surface-relief grating (SRG) inscription, photo-induced molecular orientation (<>), and thermal stability in two sets of supramolecular azopolymer complexes, namely, hydrogen-bonded (H-bonded) and ionically bonded (i-bonded) complexes, both as a function of the polymer degree of polymerization (DP). To that end, poly(4-vinylpyridine) (P4VP) polymers with DPs of 41, 480, and 1900 were H-bonded at an equimolar ratio with 4-hydroxy-4'-dimethylaminoazobenzene (azoOH), and the fully quaternized derivatives of the three P4VPs (P4VPMe) were i-bonded ion exchange to sodium 4-[(4-dimethylamino)-phenylazo]benzene sulfonate (azoSO), also known as methyl orange, where the OH functionality of azoOH is replaced by a sulfonate group. The i-bonded complexes show much better DE performances and <> levels than those of H-bonded complexes, which we relate to the liquid crystal structure of the former complexes.
View Article and Find Full Text PDFBlock copolymer (BCP) thin films prepared by dip-coating are increasingly investigated, owing to the many promising application areas, the facility, and the industrial scalability of this technique. Yet, the effect of different dip-coating parameters on BCP nanostructure formation is still underdeveloped and the results of previous literature are limited to a few block copolymers. Here, we study the effect of the withdrawal rate and solvent selectivity on the morphology evolution of dip-coated polystyrene--poly(ethylene oxide) thin films by applying a wide range of dip-coating speeds and altering the volume ratio of the tetrahydrofuran-water solvent system.
View Article and Find Full Text PDFHerein, a simple hierarchical surface patterning method is presented by effectively combining buckling instability and azopolymer-based surface relief grating inscription. In this technique, submicron patterns are achieved using azopolymers, whereas the microscale patterns are fabricated by subsequent thermal shrinkage. The wetting characterization of various topographically patterned surfaces confirms that the method permits tuning of contact angles and choosing between isotropic and anisotropic wetting.
View Article and Find Full Text PDFThe fabrication, thickness, and structure of aerogel films composed of covalently cross-linked cellulose nanocrystals (CNCs) and poly(oligoethylene glycol methacrylate) (POEGMA) were optimized for use as electrolyte absorbers in dye-sensitized solar cells (DSSCs). The aerogel films were cast directly on transparent conducting counter electrode substrates (glass and flexible poly(ethylene terephthalate) plastic) and then used to absorb drop-cast liquid electrolyte, thus providing an alternative method of filling electrolyte in DSSCs. This approach eliminates the use of electrolyte-filling holes, which are a typical pathway of electrolyte leakage, and furthermore enables a homogeneous distribution of electrolyte components within the photoelectrode.
View Article and Find Full Text PDFACS Appl Mater Interfaces
February 2019
Although two-dimensional hydrogel thin films have been applied across many biomedical applications, creating higher dimensionality structured hydrogel interfaces would enable potentially improved and more biomimetic hydrogel performance in biosensing, bioseparations, tissue engineering, drug delivery, and wound healing applications. Herein, we present a new and simple approach to control the structure of hydrogel thin films in 2.5D.
View Article and Find Full Text PDFFor many applications, it is imperative that changes in polymer surface topography, especially periodic patterns, can be triggered on command by a well-defined remote signal. In this contribution, we report a light-induced cascade of changes in wrinkling wavelengths on thin polymer layers supported by an elastomeric substrate under tensile stress. Through the applied supramolecular design, the effect of varying the ratio of light-active and light-passive components can be easily assessed, and it is shown that both the cascade type as well as the rate of the progress of the dynamic light-induced changes can be tuned by this ratio as well as by the light intensity.
View Article and Find Full Text PDFThis study describes a simple yet efficient approach for the preparation of an ionic gel that is also elastomeric in its solid-state bulk form. A series of poly(2-(diethylamino)ethyl methacrylate--lauryl methacrylate) P(DMAEMA--LMA) copolymers were synthesized first by radical polymerization. Quaternization of the PDMAEMA component in tetrahydrofuran enables the formation of supramolecular network, giving rise to an ion gel.
View Article and Find Full Text PDFMacromol Rapid Commun
January 2018
Exciting new applications, from large-area nanopatterning and templating to soft light-powered robotics, are emerging from the fundamental research on light-triggered changes in macromolecular systems upon photoisomerization of azobenzene-based molecular photoswitches. The understanding of how the initial molecular-scale photoisomerization of azobenzene, a complex photochemical event in itself, is translated into the response of macromolecules and even into macroscopic-scale motion of illuminated azomaterials is an enormous task. The focus here is on how this knowledge has advanced by applying different vibrational spectroscopy techniques that provide rich molecular insight into the photoresponse of chemically specific molecular moieties.
View Article and Find Full Text PDF