This work uses the direct current magnetron sputtering (DCMS) of equi-atomic (AlTiZrHfTa) and Si targets in dynamic sweep mode to deposit nano-layered (AlTiZrHfTa)N/SiN refractory high-entropy coatings (RHECs). Transmission electron microscopy (TEM), field emission scanning electron microscopy (FESEM), thermogravimetric analysis (TGA), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS) are used to investigate the effect of Si addition on the oxidation behavior of the nano-layered coatings. The Si-free nitride coating exhibits FCC structure and columnar morphology, while the Si-doped nitride coatings present a FCC (AlTiZrHfTa)N/amorphous-SiN nano-layered architecture.
View Article and Find Full Text PDFControl of the optical properties of a nanoparticle (NP) through its structural changes underlies optical data processing, dynamic coloring, and smart sensing at the nanometer scale. Here, we report on the concept of controlling the light scattering by a NP through mixing of weakly miscible chemical elements (Fe and Au), supporting a thermal-induced phase transformation. The transformation corresponds to the transition from a homogeneous metastable solid solution phase of the (Fe,Au) NP towards an equilibrium biphasic Janus-type NP.
View Article and Find Full Text PDFDespite recent advances in exfoliated vdW ferromagnets, the widespread application of 2D magnetism requires a Curie temperature (T) above room temperature as well as a stable and controllable magnetic anisotropy. Here we demonstrate a large-scale iron-based vdW material FeGeTe with the T reaching ~530 K. We confirmed the high-temperature ferromagnetism by multiple characterizations.
View Article and Find Full Text PDFMechanical energy harvesting using piezoelectric nanogenerators (PNGs) offers an attractive solution for driving low-power portable devices and self-powered electronic systems. Here, we designed an eco-friendly and flexible piezocomposite nanogenerator (c-PNG) based on H(ZrTi)O nanowires (HZTO-nw) and BaCaZrTiO multipods (BCZT-mp) as fillers and polylactic acid (PLA) as a biodegradable polymer matrix. The effects of the applied stress amplitude, frequency and pressing duration on the electric outputs in the piezocomposite nanogenerator (c-PNG) device were investigated by simultaneous recording of the mechanical input and the electrical outputs.
View Article and Find Full Text PDFA joint experimental and theoretical study is presented to reveal the influence of nitrogen doping on the optical and electrical properties of NiO thin films. Nitrogen addition can significantly enhance the subgap absorption. The molecular state of nitrogen (N) has been identified in these doped thin films by electron energy loss spectroscopy.
View Article and Find Full Text PDFThis study reports a strong ME effect in thin-film composites consisting of nickel, iron, or cobalt foils and 550 nm thick AlN films grown by PE-ALD at a (low) temperature of 250 °C and ensuring isotropic and highly conformal coating profiles. The AlN film quality and the interface between the film and the foils are meticulously investigated by means of high-resolution transmission electron microscopy and the adhesion test. An interface (transition) layer of partially amorphous AlO/AlON with thicknesses of 10 and 20 nm, corresponding to the films grown on Ni, Fe, and Co foils, is revealed.
View Article and Find Full Text PDFSpintronics exploit spin-orbit coupling (SOC) to generate spin currents, spin torques, and, in the absence of inversion symmetry, Rashba and Dzyaloshinskii-Moriya interactions. The widely used magnetic materials, based on 3d metals such as Fe and Co, possess a small SOC. To circumvent this shortcoming, the common practice has been to utilize the large SOC of nonmagnetic layers of 5d heavy metals (HMs), such as Pt, to generate spin currents and, in turn, exert spin torques on the magnetic layers.
View Article and Find Full Text PDFIEEE Trans Ultrason Ferroelectr Freq Control
June 2021
Batteryless, wireless, and packageless acoustic wave sensors are particularly desirable for harsh high-temperature environments. In this letter, an acoustic wave sensor based on a lithium niobate (Y + 128° cut, abbreviated LN-Y128) substrate with a buried platinum interdigital transducer (IDT) in an aluminum nitride (AlN) overlayer is investigated. Previously, it was demonstrated theoretically that due to the specific properties of LN-Y128, Rayleigh-type guided waves can propagate at the AlN/IDT(Pt)/LN-Y128 interface.
View Article and Find Full Text PDFIn Agadir, a water-scarce Moroccan region, municipal and industrial wastewater is tertiary-treated to be reused in golf courses. Wastewater reuse has been constrained by severe clogging of emitters, which caused technical and financial problems. This study aimed to perform an in-depth characterization of the treated wastewater (TWW) in relation to its susceptibility to cause clogging, and to assess the capacity of an aeration post-treatment to reduce the clogging potential.
View Article and Find Full Text PDFScandium aluminum nitride (ScAlN) films are currently intensively studied for surface acoustic waves (SAW) filters and sensors applications, because of the excellent tradeoff they present between high SAW velocity, large piezoelectric properties and wide bandgap for the intermediate compositions with an Sc content between 10 and 20%. In this paper, the growth of ScAlN and ScAlN films on sapphire substrates by sputtering method is investigated. The plasma parameters were optimized, according to the film composition, in order to obtain highly-oriented films.
View Article and Find Full Text PDFNanomaterials (Basel)
June 2020
Engineering of magnetic materials for developing better spintronic applications relies on the control of two key parameters: the spin polarization and the Gilbert damping, responsible for the spin angular momentum dissipation. Both of them are expected to affect the ultrafast magnetization dynamics occurring on the femtosecond timescale. Here, engineered Co MnAl Si Heusler compounds are used to adjust the degree of spin polarization at the Fermi energy, P, from 60% to 100% and to investigate how they correlate with the damping.
View Article and Find Full Text PDFDesigning and manufacturing multifunctional nanoparticles (NPs) are of considerable interest for both academic and industrial research. Among NPs used in this field, iron oxide NPs show low toxicity compared to metallic ones and are thus of high interest for biomedical applications. In this work, superparamagnetic FeO-based core/shell NPs were successfully prepared and characterized by the combination of different techniques, and their physical properties were investigated.
View Article and Find Full Text PDFFunctionalized multi-walled carbon nanotubes (MWCNT) have become the focus of increased research interest, particularly in their application as tools in different areas, such as the biomedical field. Despite the benefits associated with functionalization of MWCNT, particularly in overcoming issues relating to solubility, several studies have demonstrated that these functionalized nanoparticles display different toxicity profiles. For this study, we aim to compare NR8383 cells responses to three well-characterized MWCNT with varying functional groups.
View Article and Find Full Text PDFBecause the binary chalcogenide SnTe is an interesting Pb-free alternative to the state-of-the-art thermoelectric material PbTe, significant efforts were devoted to the optimization of its thermoelectric properties over the last few years. Here, we show that saturation-annealing treatments performed at 823, 873 or 973 K under Sn-rich conditions provide a successful strategy to prepare polycrystalline samples with a controlled concentration of Sn vacancies. Both scanning transmission electron microscopy and Mössbauer spectroscopy demonstrate the absence of Sn-rich areas at the grain boundaries in the saturation-annealed samples.
View Article and Find Full Text PDFA new ternary phase with a composition AlVSn ( = 0.19) has been found during investigation of the Al-V-Sn ternary system. Single-crystal X-ray diffraction measurements reveal that this ternary phase crystallizes with an orthorhombic structure with = 5.
View Article and Find Full Text PDFInteresting sensing performances of indoor formaldehyde pollution were obtained when small amounts of zinc were introduced in tin oxides. Nanostructured Sn oxide-based porous materials doped with Zn or not, were synthesized using hydrothermal routes. The physicochemical properties of the as-prepared metal-oxide materials were characterized using nitrogen adsorption, X-ray powder diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS).
View Article and Find Full Text PDFCopper surface after antibacterial test against E. coli was examined in the aspect of corrosion. Results from scanning electron microscope (SEM), grazing incidence X-ray diffractometer (GIXRD) and Raman spectroscopy together confirmed less oxidation on copper surface with the presence of E.
View Article and Find Full Text PDFSynthetic organic and inorganic carriers often have limitations associated with problematic targeting ability or non-optimized pharmacokinetics, and, therefore, they have restricted therapeutic potential. Natural drug carriers (e.g.
View Article and Find Full Text PDFCorrection for 'Laser printing of optically resonant hollow crystalline carbon nanostructures from 1D and 2D metal-organic frameworks' by Leila R. Mingabudinova et al., Nanoscale, 2019, 11, 10155-10159.
View Article and Find Full Text PDFUsing a hybrid approach involving a slow diffusion method to synthesize 1D and 2D MOFs followed by their treatment with femtosecond infrared laser radiation, we generated 100-600 nm well-defined hollow spheres and hemispheres of graphite. This ultra-fast technique extends the library of shapes of crystalline MOF derivatives appropriate for all-dielectric nanophotonics.
View Article and Find Full Text PDFHere, we study the stress-induced self-organization of Mg and Ni cations in the crystal structure of multiwalled (Mg ,Ni ) Si O (OH) phyllosilicate nanoscrolls. The phyllosilicate layer strives to compensate size and surface energy difference between the metal oxide and silica sheets by curling. But as soon as the layer grows, the scrolling mechanism becomes a spent force.
View Article and Find Full Text PDFPlasmonic Cu nanoparticles (NP) were successfully deposited on ZnO substrates by atomic layer deposition (ALD) owing to the Volmer-Weber island growth mode. An evolution from Cu NP to continuous Cu films was observed with an increasing number of ALD cycles. Real and imaginary parts of the NP dielectric functions, determined by spectroscopic ellipsometry using an effective medium approach, evidence a localized surface plasmon resonance that can be tuned between the visible and near-infrared ranges by controlling the interparticle spacing and size of the NP.
View Article and Find Full Text PDF