Publications by authors named "Jaafar A El-Awady"

The tangential force required to observe slip across a whole frictional interface can increase over time under a constant load, due to any combination of creep, chemical, or structural changes of the interface. In macroscopic rate-and-state models, these frictional aging processes are lumped into an ad hoc state variable. Here we explain, for a frictional system exclusively undergoing structural aging, how the macroscopic friction response emerges from the interplay between the surface roughness and the molecular motion within adsorbed monolayers.

View Article and Find Full Text PDF

Next-generation structural materials are expected to be lightweight, high-strength and tough composites with embedded functionalities to sense, adapt, self-repair, morph and restore. This Review highlights recent developments and concepts in bioinspired nanocomposites, emphasizing tailoring of the architecture, interphases and confinement to achieve dynamic and synergetic responses. We highlight cornerstone examples from natural materials with unique mechanical property combinations based on relatively simple building blocks produced in aqueous environments under ambient conditions.

View Article and Find Full Text PDF

The life span of metals can be inferred from early microscopic deformation events.

View Article and Find Full Text PDF

Dislocation glide is a general deformation mode, governing the strength of metals. Via discrete dislocation dynamics and molecular dynamics simulations, we investigate the strain rate and dislocation density dependence of the strength of bulk copper and aluminum single crystals. An analytical relationship between material strength, dislocation density, strain rate and dislocation mobility is proposed, which agrees well with current simulations and published experiments.

View Article and Find Full Text PDF

Coarse-grained molecular dynamics (CG-MD) simulations were conducted to characterize the molecular structure and mechanical properties in the epoxy matrix around fibers in polymer matrix composites (PMCs). From these simulations, the molecular structure was quantified by measuring the free-volume hole radius distribution as a function of position from the matrix-fiber interface. Additionally, correlations between the epoxy mechanical properties and the average free-volume hole radius were established for different degrees of cross-linking.

View Article and Find Full Text PDF

Plastic deformation in crystalline materials consists of an ensemble of collective dislocation glide processes, which lead to strain burst emissions in micro-scale samples. To unravel the combined role of crystalline structure, sample size and temperature on these processes, we performed a comprehensive set of strict displacement-controlled micropillar compression experiments in conjunction with large-scale molecular dynamics and physics-based discrete dislocation dynamics simulations. The results indicate that plastic strain bursts consist of numerous individual dislocation glide events, which span over minuscule time intervals.

View Article and Find Full Text PDF

Fatigue damage in metals manifests itself as irreversible dislocation motion followed by crack initiation and propagation. Characterizing the transition from a crack-free to a cracked metal remains one of the most challenging problems in fatigue. Persistent slip bands (PSBs) form in metals during cyclic loading and are one of the most important aspects of this transition.

View Article and Find Full Text PDF

Scanning Transmission Electron Microscopy Diffraction Contrast Imaging (STEM-DCI) has been gaining popularity for the identification and analysis of dislocations in crystalline materials due to its ability to supress undesirable image features that are often present in conventional TEM images. However, there does not yet exist a robust body of work demonstrating expected contrast in these imaging conditions. A novel approach for the simulation of STEM-DCI images was developed using a modified form of the scattering matrix formalism.

View Article and Find Full Text PDF

A new algorithm is developed to quantify the free-volume hole distribution and its evolution in coarse-grained molecular dynamics simulations of polymeric networks. This is achieved by analyzing the geometry of the network rather than a voxelized image of the structure to accurately and efficiently find and quantify free-volume hole distributions within large scale simulations of polymer networks. The free-volume holes are quantified by fitting the largest ellipsoids and spheres in the free-volumes between polymer chains.

View Article and Find Full Text PDF

In this work, a coarse-grained model is developed for highly cross-linked bisphenol A diglycidyl ether epoxy resin with diaminobutane hardener. In this model, all conformationally relevant coarse-grained degrees of freedom are accounted for by sampling over the free-energy surfaces of the atomic structures using quantum mechanical simulations. The interaction potentials between nonbonded coarse-grained particles are optimized to accurately predict the experimentally measured density and glass-transition temperature of the system.

View Article and Find Full Text PDF

Size-affected dislocation-mediated plasticity is important in a wide range of materials and technologies. Here we develop a generalized size-dependent dislocation-based model that predicts strength as a function of crystal/grain size and the dislocation density. Three-dimensional (3D) discrete dislocation dynamics (DDD) simulations reveal the existence of a well-defined relationship between strength and dislocation microstructure at all length scales for both single crystals and polycrystalline materials.

View Article and Find Full Text PDF