A simple and compact intensity-interrogated terahertz (THz) relative humidity (RH) sensing platform is successfully demonstrated in experiments on the basis of combining a porous polymer sensing membrane and a continuous THz electronic system. The RH-sensing membrane is fabricated by surface modification of a porous polymer substrate with hydrophilic and photosensitive copolymer brushes via a UV-induced graft-polymerization process. The intensity interrogation sensing scheme indicated that the power reduction of the 0.
View Article and Find Full Text PDFBiosensors (Basel)
August 2022
Terahertz (THz) spectroscopy has been proven as an effective detection means for the label-free and nondestructive sensing of biochemical molecules based on their unique roto-vibrational transitions. However, the conventional THz spectroscopic system is unsuitable for minute material sensing due to its far-field detection scheme, low sample amount, and lack of spectral characteristics, leading to low absorption cross-sections and sensitivity. In this study, a 3D plasmonic structure based on a metal-coated woven-wire mesh (MCWM) was experimentally and numerically demonstrated for sensing trace amounts of analytes combined with THz spectroscopy.
View Article and Find Full Text PDFMetal-hole-supported terahertz (THz) waves through the structure of a metal-wire-woven hole array (MWW-HA) present high-frequency-passed transmittance spectra of one plasmonic metamaterial with artificial plasmonic frequencies, which are inversely proportional to metal-hole widths. For the transmitted THz waves of MWW-HA, transverse-electric (TE) and transverse-magnetic (TM) waveguide modes mix within a symmetric metal-hole boundary. THz resonance waves transversely crossing the holes of MWW-HA are experimentally characterized with spectral peaks in the frequency range of 0.
View Article and Find Full Text PDFFunctional mineral water and related products are popular in some Asian countries as health drinks and, recently, have been employed in agricultural crop production as well as pest control. This study aimed to investigate the survival of mosquito vectors exposed to plant-derived functional mineral water produced by terahertz technology. The terahertz-based functional mineral water used in the current study not only decreased the hatching of (Say) larvae but also showed concentration-dependent toxicity to the 3rd instar larvae and pupae of the three mosquito species tested.
View Article and Find Full Text PDFIn this work, one metallic photonic crystal waveguide composed of periodic metal rod arrays (MRAs) is experimentally and numerically demonstrated in terahertz frequencies. Such waveguides fabricated by 3D printers exhibit two resonant modes: the fundamental mode and the high-order mode, separating by a broad bandgap. Compared to the fundamental mode, the high-order mode shows higher field confinement and more sensitive to the geometry changes.
View Article and Find Full Text PDFGas sensing to recognize volatile liquids is successfully conducted through pipe-guided terahertz (THz) radiation in a reflective and label-free manner. The hollow core of a pipe waveguide can efficiently deliver the sensing probe of the THz confined waveguide fields to any place where dangerous vapors exist. Target vapors that naturally diffuse from a sample site into the pipe core can be detected based on strong interaction between the probe and analyte.
View Article and Find Full Text PDFA multilayered water-skin model is used to experimentally verify a new sensing method for determining the skin penetration depth of radiation with 0.1-0.9 terahertz (THz) frequencies.
View Article and Find Full Text PDFTerahertz (THz) waves laterally confined in a 1 mm-thick microstructured planar waveguide are demonstrated on a free-standing metal rod array (MRA), and one apparent rejection band of a transmission spectrum, resembling the bandgap of a photonic crystal, is found in 0.1-0.6 THz.
View Article and Find Full Text PDFAtherosclerotic plaque rupture or erosion and subsequent development of platelet-containing thrombus formation is the fundamental cause of cardiovascular disease, which is the most common cause of death and disability worldwide. Here we show the high sensitivity of 200-270 GHz T-ray to distinguish thrombus formation at its early stage from uncoagulated blood. A clinical observational study was conducted to longitudinally monitor the T-ray absorption constant of ex-vivo human blood during the thrombus formation from 29 subjects.
View Article and Find Full Text PDFA terahertz artificial material composed of metal rod array is experimentally investigated on its transmission spectral property and successfully incorporated into microfluidics as a miniaturized terahertz waveguide with an extended optical-path-length for label-free fluidic sensing. Theoretical and experimental characterizations of terahertz transmission spectra show that the wave guidance along the metal rod array originates from the resonance of transverse-electric-polarized waves within the metal rod slits. The extended optical path length along three layers of metal-rod-array enables terahertz waves sufficiently overlapping the fluid molecules embedded among the rods, leading to strongly enhanced phase change by approximately one order of magnitude compared with the blank metal-parallel-plate waveguide.
View Article and Find Full Text PDFThe sensitivity of multilayer microporous polymer structures (MPSs) for in situ and label-free organic vapor sensing is investigated in terahertz frequency. The porous structure provides a large hydrophilic surface area and numerous micropores to adsorb or fill polar vapors, thereby leading to greatly enhanced wave-analyte interaction with an apparent terahertz signal change. Different configurations of MPS with distinct geometric parameters are fabricated to study the structure-dependent sensitivity.
View Article and Find Full Text PDFThe feasibility of remote chemical detection is experimentally demonstrated by using a Teflon pipe as a scanning arm in a continuous-terahertz wave sensing and imaging system. Different tablets with distinct mixed ratios of aluminum and polyethylene powders are well distinguished by measuring the power reflectivities of 0.4 THz wave associated with their distinct terahertz refractive indices.
View Article and Find Full Text PDFA compact, inexpensive, low loss, highly sensitive gas sensor is important for various biomedical and industrial applications. However, current gas sensors still have an inadequate study in terahertz (THz) frequency range. In this study, simple multilayer-stacked microporous polymer membranes are experimentally validated in the THz regime for organic vapor sensing under ambient atmosphere and room temperature.
View Article and Find Full Text PDFA high-aspect-ratio metallic rod array is demonstrated to generate and propagate highly confined terahertz (THz) surface plasmonic waves under end-fire excitation. The transverse modal power distribution and spectral properties of the bound THz plasmonic wave are characterized in two metallic rod arrays with different periods and in two configurations with and without attaching a subwavelength superstrate. The integrated metallic rod array-based waveguide can be used to sense the various thin films deposited on the polypropylene superstrate based on the phase-sensitive mechanism.
View Article and Find Full Text PDFThe suitability of a terahertz plasmonic sensor for sensing applications is successfully demonstrated using a hybrid planar waveguide composed of a subwavelength plastic ribbon waveguide and a diffraction metal grating. The subwavelength-confined terahertz plasmons on the hybrid waveguide resonantly reflect from the periodic metal structure under phase-matched conditions and perform resonant transmission dips. The resonant plasmonic frequencies are found to be strongly dependent on the refractive indices and thicknesses of analytes laid on the hybrid planar waveguide.
View Article and Find Full Text PDFA terahertz plasmonic waveguide is experimentally demonstrated using a plastic ribbon waveguide integrated with a diffraction metal grating to approach subwavelength-scaled confinement and long-distance delivery. Appropriately adjusting the metal-thickness and the periodical slit width of a grating greatly improves both guiding ability and field confinement in the hybrid waveguide structure. The measured lateral decay length of the bound terahertz surface waves on the hybrid waveguide can be reduced to less than λ/4 after propagating a waveguide of around 50mm-long in length.
View Article and Find Full Text PDFA dielectric pipe waveguide is successfully demonstrated as a terahertz refractive index sensor for powder and liquid-vapor sensing. Without additional engineered structures, a simple pipe waveguide can act as a terahertz resonator based on anti-resonant reflecting guidance, forming multiple resonant transmission-dips. Loading various powders in the ring-cladding or inserting different vapors into the hollow core of the pipe waveguide leads to a significant shift of resonant frequency, and the spectral shift is related to the refractive-index change.
View Article and Find Full Text PDFA novel tunable terahertz notch filter is demonstrated using antiresonant reflecting hollow waveguides with movable metal layers outside dielectric claddings. Based on the Fabry-Pérot resonance of the dielectric cladding, multiple deep notches are observed in a broad THz transmission spectrum. Continuous shift of notch frequencies is for the first time experimentally observed by lateral translation of metal layers from dielectric claddings.
View Article and Find Full Text PDFA simple dielectric hollow-tube has been experimentally demonstrated at terahertz range for bio-molecular layer sensing based on the anti-resonant reflecting wave-guidance mechanism. We experimentally study the dependence of thin-film detection sensitivity on the optical geometrical parameters of tubes, different thicknesses and tube wall refractive indices, and on different resonant frequencies. A polypropylene hollow-tube with optimized sensitivity of 0.
View Article and Find Full Text PDFModal characteristics of the THz pipe waveguide, which is a thin pipe consisting of a large air core and a thin dielectric layer with uniform but low index, are investigated. Modal indices and attenuation constants are calculated for various core diameters, cladding thicknesses, and cladding refractive indices. Numerical results reveal that the guiding mechanism of the leaky core modes, which transmit most of the power in the air-core region, is that of the antiresonant reflecting guiding.
View Article and Find Full Text PDFA highly sensitive detection method based on the evanescent wave of a terahertz subwavelength plastic wire was demonstrated for liquid sensing. Terahertz power spreading outside the wire core makes the waveguide dispersion sensitive to the cladding index variation, resulting in a considerable deviation of waveguide dispersion. Two liquids with transparent appearances, water and alcohol, are easily distinguished based on the waveguide dispersion, which is consistent with theoretical predictions.
View Article and Find Full Text PDFWe demonstrate a new reflective imaging technique using continuous-wave THz fiber-endoscopy, in which the sample is placed behind the output of a THz subwavelength plastic fiber and the Fabry Perot interference is formed therein. 3D THz reflective images with a reasonable SNR as well as high lateral and subwavelength axial resolutions are acquired by moving the sample along the axial (z) direction and by 2D scanning the output end of the subwavelength plastic fiber without any focusing medium. By analyzing the axial-position dependent THz signals backward collected by the subwavelength plastic fiber, the THz reflection amplitudes and phases on the sample surface can be successfully reconstructed.
View Article and Find Full Text PDFBy measuring the spectral loss characteristics of subwavelength-diameter terahertz fibers, our study supports the recent theory proposed by M. Sumetsky [Opt. Lett.
View Article and Find Full Text PDFA simple terahertz (THz) Fourier transform spectrometer is theoretically and experimentally demonstrated with a low-reflectivity Fabry-Perot interferometer. Composed with only two parallel low reflectivity surfaces, this simple spectrometer has the ability to measure the spectrum over more than one octave with a controllable resolution. The emission spectra of a wavelength-tunable photonic transmitter excited by an optical coherent control system are determined by the spectrometer.
View Article and Find Full Text PDFWe report a simple subwavelength-diameter plastic wire, similar to an optical fiber, for guiding a terahertz wave with a low attenuation constant. With a large wavelength-to-fiber-core ratio, the fractional power delivered inside the lossy core is reduced, thus lowering the effective fiber attenuation constant. In our experiment we adopt a polyethylene fiber with a 200 microm diameter for guiding terahertz waves in the frequency range near 0.
View Article and Find Full Text PDF