Evasion of the immune response is a hallmark of cancer, and programmed cell death 1 (PD-1) and PD-1 ligand 1 (PD-L1) are major mediators of this immunosuppression. Chitinase 3-like 1 (CHI3L1) is induced in many cancers, where it portends a poor prognosis and contributes to tumor metastasis and spread. However, the mechanism(s) that CHI3L1 uses in metastasis have not been defined.
View Article and Find Full Text PDFIntroduction: This study aimed to characterize the tumor-infiltrating immune cells population in Kras/tumor protein 53 (Trp53)-driven lung tumors and to evaluate the combinatorial antitumor effect with MEK inhibitor (MEKi), trametinib, and immunomodulatory monoclonal antibodies (mAbs) targeting either programmed death -1 (PD-1) or programmed cell death ligand 1 (PD-L1) in vivo.
Methods: Trp53;Kras;Rosa26 (PKL) genetically engineered mice were used to develop autochthonous lung tumors with intratracheal delivery of adenoviral Cre recombinase. Using these tumor-bearing lungs, tumor-infiltrating immune cells were characterized by both mass cytometry and flow cytometry.
Purpose: Human papillomavirus (HPV)-negative head and neck squamous cell carcinomas (HNSCC) commonly bear disruptive mutations in , resulting in treatment resistance. In these patients, direct targeting of p53 has not been successful, but synthetic lethal approaches have promise. Although Aurora A kinase (AURKA) is overexpressed and an oncogenic driver, its inhibition has only modest clinical effects in HPV-negative HNSCC.
View Article and Find Full Text PDFBackground/aims: p21-activated Ser/Thr kinase 1 (PAK1) is essential for the genesis and development of many cancers. The purpose of this study was to investigate the role of the PAK1-cyclic AMP response element-binding (CREB) axis in non-small cell lung cancer (NSCLC) tumorigenesis and its related mechanisms.
Methods: Western blot assay and immunohistochemical staining were employed to investigate the PAK1 and CREB expression in the tissue microarray of human squamous NSCLC.
Pancreatic adenocarcinoma (PDAC) is the fourth most common cause of cancer-related death in the United States. PDAC is difficult to manage effectively, with a five-year survival rate of only 5%. PDAC is largely driven by activating mutations, and as such, cannot be directly targeted with therapeutic agents that affect the activated protein.
View Article and Find Full Text PDFPurpose: By applying the principles of real-time biopsy, biomarker-based, adaptively randomized studies in non-small-cell lung cancer (NSCLC) established by the Biomarker-Integrated Approaches of Targeted Therapy for Lung Cancer Elimination (BATTLE) trial, we conducted BATTLE-2 (BATTLE-2 Program: A Biomarker-Integrated Targeted Therapy Study in Previously Treated Patients With Advanced Non-Small Cell Lung Cancer), an umbrella study to evaluate the effects of targeted therapies focusing on KRAS-mutated cancers.
Patients And Methods: Patients with advanced NSCLC (excluding sensitizing EGFR mutations and ALK gene fusions) refractory to more than one prior therapy were randomly assigned, stratified by KRAS status, to four arms: (1) erlotinib, (2) erlotinib plus MK-2206, (3) MK-2206 plus AZD6244, or (4) sorafenib. Tumor gene expression profiling-targeted next-generation sequencing was performed to evaluate predictive and prognostic biomarkers.
Overexpression or activation of cyclic AMP-response element-binding protein (CREB) has been known to be involved in several human malignancies, including lung cancer. Genes regulated by CREB have been reported to suppress apoptosis, induce cell proliferation, inflammation, and tumor metastasis. However, the critical target genes of CREB in lung cancer have not been well understood.
View Article and Find Full Text PDFBackground: The E2F members have been divided into transcription activators (E2F1-E2F3) and repressors (E2F4-E2F8). E2F8 with E2F7 has been known to play an important physiologic role in embryonic development and cell cycle regulation by repressing E2F1. However, the function of E2F8 in cancer cells is unknown.
View Article and Find Full Text PDFLung adenocarcinoma, the most common subtype of lung cancer, is the leading cause of cancer death worldwide. Despite attempts for the treatment of lung cancer which have been accumulating, promising new therapies are still needed. Here, we found that cyclic-AMP response element-binding protein (CREB)-CREB binding protein (CBP) transcription factors complex inhibitor, Naphthol AS-TR phosphate (NASTRp), is a potential therapeutic agent for lung cancer.
View Article and Find Full Text PDFThe prototypic chitinase-like protein Chi3l1 is induced in cancers and portends a poor prognosis, but whether it contributes to cancer progression is unknown. To address this gap in knowledge, we investigated the production of Chi3l1 in melanoma lung metastases. We found that Chi3l1 was induced during pulmonary melanoma metastasis and that this induction was regulated by the semaphorin Sema7a, interacting in stimulatory or inhibitory ways with its β1 integrin or Plexin C1 receptors, respectively.
View Article and Find Full Text PDFCXCR2 in non-small cell lung cancer (NSCLC) has been studied mainly in stromal cells and is known to increase tumor inflammation and angiogenesis. Here, we examined the prognostic importance of CXCR2 in NSCLC and the role of CXCR2 and its ligands in lung cancer cells. The effect of CXCR2 expression on tumor cells was studied using stable knockdown clones derived from a murine KRAS/p53-mutant lung adenocarcinoma cell line with high metastatic potential and an orthotopic syngeneic mouse model and in vitro using a CXCR2 small-molecule antagonist (SB225002).
View Article and Find Full Text PDFLung cancer is the leading cause of cancer-related mortality worldwide. Early detection or prevention strategies are urgently needed to increase survival. Hyperplasia is the first morphologic change that occurs in the bronchial epithelium during lung cancer development, followed by squamous metaplasia, dysplasia, carcinoma in situ, and invasive tumor.
View Article and Find Full Text PDFBiosens Bioelectron
October 2009
Amperometric immunosensors were developed to diagnose lung cancer through the detection of Annexin II and MUC5AC. To fabricate the sensor probe, a conducting polymer (poly-terthiophene carboxylic acid; poly-TTCA) was electropolymerized onto a gold nanoparticle/glassy carbon electrode (AuNP/GCE) and a dendrimer (Den) was covalently bonded to the poly-TTCA through amide bond formation, where AuNPs were doped onto the dendrimer. To obtain the final sensor probe, an antibody (anti-Annexin II) and hydrazine (Hyd), which is a catalyst for the reduction of H(2)O(2) generated by glucose oxidase (GOx), were covalently attached onto the Den/AuNP-modified surface.
View Article and Find Full Text PDFMucus secretion is an important protective mechanism for the luminal lining of open tubular organs, but mucin overproduction in the respiratory tract can exacerbate the inflammatory process and cause airway obstruction. Production of MUC5AC, a predominant gel-forming mucin secreted by airway epithelia, can be induced by various inflammatory mediators such as prostaglandins. The two major prostaglandins involved in inflammation are PGE(2) and PGF(2alpha).
View Article and Find Full Text PDFThe recognition of the importance of angiogenesis in tumor progression has led to the development of antiangiogenesis as a new strategy for cancer treatment and prevention. By modulating tumor microenvironment and inducing angiogenesis, the proinflammatory cytokine interleukine (IL)-1beta has been reported to promote tumor development. However, the factors mediating IL-1beta-induced angiogenesis in non-small cell lung cancer (NSCLC) and the regulation of these angiogenic factors by IL-1beta are less clear.
View Article and Find Full Text PDFMucus production is a primary defense mechanism for maintaining lung health. However, the overproduction of mucin (the chief glycoprotein component of mucus) is a common pathological feature in asthma, chronic obstructive pulmonary disease (COPD), cystic fibrosis (CF), and lung cancer. Although it is associated with disease progression, effective therapies that directly target mucin overproduction and hypersecretion are lacking.
View Article and Find Full Text PDFLung cancer is the leading cause of cancer deaths worldwide. Recent advances in targeted therapies hold promise for the development of new treatments for certain subsets of cancer patients by targeting specific signaling molecule. Based on the identification of the transcription factor cyclic AMP response element-binding protein (CREB) as an important regulator of growth of several types of cancers and our recent findings of its importance in normal differentiation of bronchial epithelial cells, we hypothesized that CREB plays an important pathobiologic role in lung carcinogenesis.
View Article and Find Full Text PDFGenes regulated by cyclic AMP-response element-binding protein (CREB) have been reported to suppress apoptosis, induce cell proliferation, and mediate inflammation and tumor metastasis. However, it is not clear whether CREB is critically involved in lung carcinogenesis. We found that non-small cell lung cancer (NSCLC) cell lines exhibited elevated constitutive activity in CREB, in its immediate upstream kinases (ribosomal s6 kinase and extracellular signal kinase), and in the CREB-regulated cell survival proteins Bcl-2 and Bcl-xL.
View Article and Find Full Text PDFCREB [CRE (cAMP-response element)-binding protein] is an important transcription factor that is differentially regulated in cells of various types. We recently reported that RA (retinoic acid) rapidly activates CREB without using RARs (RA receptors) or RXRs (retinoid X receptors) in NHTBE cells (normal human tracheobronchial epithelial cells). However, little is known about the role of RA in the physiological regulation of CREB expression in the early mucous differentiation of NHTBE cells.
View Article and Find Full Text PDFVitamin A and its metabolite retinoic acid (RA) are essential elements for normal lung development and the differentiation of lung epithelial cells. We previously showed that RA rapidly activated cyclic AMP response element-binding protein (CREB) in a nonclassical manner in normal human tracheobronchial epithelial (NHTBE) cells. In the present study, we further demonstrated that this nonclassical signaling of RA on the activation of CREB plays a critical role in regulating the expression of airway epithelial cell differentiation markers, the MUC2, MUC5AC, and MUC5B genes.
View Article and Find Full Text PDFSquamous cell carcinoma in the lung originates from bronchial epithelial cells that acquire increasingly abnormal phenotypes. Currently, no known biomarkers are clinically efficient for the early detection of premalignant lesions and lung cancer. We sought to identify secreted molecules produced from squamous bronchial epithelial cells cultured with organotypic culture methods.
View Article and Find Full Text PDFIncreased serum levels of the S100A8 (MRP-8) protein have been reported in inflammatory conditions including bacterial infection, arthritis, and cystic fibrosis (CF). This protein is expressed constitutively with S100A9 (MRP-14) in neutrophils and is regulated by inflammatory stimulants. It has been hypothesized that increased inflammatory response to persistent bacterial infection is a major feature of CF lung disease.
View Article and Find Full Text PDFBackground & Aims: Galectin-3 and MUC2 intestinal mucin each have been correlated with the malignant behavior of colon cancer cells. Galectin-3 modulates expression of MUC2 protein, but the specific regulatory mechanisms are unknown. This study sought to determine how galectin-3 increases MUC2 expression.
View Article and Find Full Text PDFVitamin A (retinol) is essential for normal regulation of cell growth and differentiation. We have shown that the retinol metabolite retinoic acid (RA) induces mucous cell differentiation of normal human tracheobronchial epithelial (NHTBE) cells. However, early biological effects of RA in the differentiation of bronchial epithelia are largely unknown.
View Article and Find Full Text PDFBackground: Mucin alterations are a common feature of colonic neoplasia, and alterations in MUC2 mucin have been associated with tumor progression in the colon. Bile acids have been linked to colorectal carcinogenesis and mucin secretion, but their effects on mucin gene expression in human colon carcinoma cells is unknown
Methods: Human colon carcinoma cells were treated = 6 hours with 10-200 microM deoxycholate, chenodeoxycholate, or ursodeoxycholate. MUC2 protein was assayed by Western blot analysis and MUC2 transcription was assayed using a MUC2 promoter reporter luciferase construct.