Publications by authors named "Ja-Kyeong Lee"

We previously reported that high mobility group box 1 (HMGB1), a danger-associated molecular pattern (DAMP), increases intracellular iron levels in the postischemic brain by upregulating hepcidin, a key regulator of iron homeostasis, triggering ferroptosis. Since hepatocytes are the primary cells that produce hepcidin and control systemic iron levels, we investigated whether cerebral ischemia induces hepcidin upregulation in hepatocytes. Following middle cerebral artery occlusion (MCAO) in a rodent model, significant liver injury was observed.

View Article and Find Full Text PDF

Taurine is ubiquitously distributed in mammalian tissues, with the highest levels in the brain, heart, and leukocytes. Taurine reacts with hypochlorous acid (HOCl) to produce taurine chloramine (Tau-Cl) via the myeloperoxidase (MPO) system. In this study, we elucidated the antioxidative and protective effects of Tau-Cl in astrocytes.

View Article and Find Full Text PDF

HMGB1 is a prototypical danger-associated molecular pattern (DAMP) molecule that co-localizes with amyloid beta (Aβ) in the brains of patients with Alzheimer's disease. HMGB1 levels are significantly higher in the cerebrospinal fluid of patients. However, the cellular and subcellular distribution of HMGB1 in relation to the pathology of Alzheimer's disease has not yet been studied in detail.

View Article and Find Full Text PDF

Dysregulation of brain iron levels causes functional disturbances and damages neurons. Hepcidin (a peptide hormone) plays a principal role in regulating intracellular iron levels by modulating ferroportin (FPN, the only known iron exporter) through triggering its internalization and lysosomal degradation. We observed a significant and rapid iron surge in the cortices of ischemic hemispheres at 3 h after cerebral ischemia (middle cerebral artery occlusion, MCAO) that was maintained until 4 d post-MCAO.

View Article and Find Full Text PDF

The high mobility group box 1 (HMGB1), a well-known danger-associated molecule pattern (DAMP) molecule, is a non-histone chromosomal protein localized in the nucleus under normal physiological conditions. HMGB1 exhibits diverse functions depending on its subcellular location. In the present study, we investigated the role of HMGB1-induced autophagy in the lipopolysaccharide (LPS)-treated BV2 microglial cell line in mediating the transition between the inflammatory and autophagic function of the nucleotide-binding oligomerization domain-containing 2 (NOD2), a cytoplasmic pattern-recognition receptor.

View Article and Find Full Text PDF

Osteopontin (OPN), a phosphorylated glycoprotein, is induced in response to tissue damage and inflammation in various organs, including the brain. In our previous studies, we reported the robust neuroprotective effects of the icosamer OPN peptide OPNpt20, containing arginine-glycine-aspartic acid (RGD) and serine-leucine-alanine-tyrosine (SLAY) motifs, in an animal model of transient focal ischemia and demonstrated that its anti-inflammatory, pro-angiogenic, and phagocytosis inducing functions are responsible for the neuroprotective effects. In the present study, we truncated OPNpt20 to 13 or 7 amino acid peptides containing RGD (R) and/or SLAY (S) motifs (OPNpt13RS, OPNpt7R, OPNpt7RS, and OPNpt7S), and their neuroprotective efficacy was examined in a rat middle cerebral artery occlusion (MCAO) model.

View Article and Find Full Text PDF

Taurine is ubiquitously distributed in mammalian tissues and is highly concentrated in the heart, brain, and leukocytes. Taurine exerts neuroprotective effects in various central nervous system diseases and can suppress infarct formation in stroke. Taurine reacts with myeloperoxidase (MPO)-derived hypochlorous acid (HOCl) to produce taurine chloramine (Tau-Cl).

View Article and Find Full Text PDF

In ischemic stroke, neutrophils infiltrate damaged brain tissue immediately following the ischemic insult and aggravate inflammation via various mechanisms which include neutrophil extracellular traps (NETs) formation. In the present study, we showed that adenosine triphosphate (ATP), a DAMP molecule, accumulates in the brain and induces NETosis in brain parenchyma and in circulating neutrophils (PMNs) isolated from a murine model of stroke induced by middle cerebral artery occlusion (MCAO). Expression of peptidylarginine deiminase-4 (PAD4), which induces citrullination of histones H3 (CitH3) and initiates NETosis, was significantly enhanced in brain parenchyma and blood PMNs following MCAO.

View Article and Find Full Text PDF

Nerve injury-induced protein 1 (Ninjurin 1, Ninj1) is a cell adhesion molecule responsible for cell-to-cell interactions between immune cells and endothelial cells. In our previous paper, we have shown that Ninj1 plays an important role in the infiltration of neutrophils in the postischemic brain and that the dodecamer peptide harboring the Ninj1 N-terminal adhesion motif (N-NAM, Pro-Asn) inhibits infiltration of neutrophils in the postischemic brain and confers robust neuroprotective and anti-inflammatory effects. In the present study, we examinedt the pro-angiogenic effect of N-NAM using human umbilical vein endothelial cells (HUVECs) and rat MCAO (middle cerebral artery occlusion) model of stroke.

View Article and Find Full Text PDF

Neutrophil extracellular traps (NETs) comprise decondensed chromatin, histones and neutrophil granular proteins and are involved in the response to infectious as well as non-infectious diseases. The prothrombotic activity of NETs has been reported in various thrombus-related diseases; this activity can be attributed to the fact that the NETs serve as a scaffold for cells and numerous coagulation factors and stimulate fibrin deposition. A crosstalk between NETs and thrombosis has been indicated to play a role in numerous thrombosis-related conditions including stroke.

View Article and Find Full Text PDF

Osteopontin (OPN) is a phosphorylated glycoprotein expressed in various tissues, including brain, and mediates a wide range of cellular activities. In our previous studies, we reported recombinant OPN and RGD and SLAY-containing OPN-peptide icosamer (OPNpt20) exhibited robust neuroprotective activities in an animal model of transient focal ischemia, and attributed these effects to the anti-inflammatory, pro-angiogenic, and phagocytic functions of OPNpt20. In the present study, we truncated OPNpt20 to 13 or 7 amino acid peptides containing RGD (R) and/or SLAY (S) motif (OPNpt13RS, OPNpt7R, OPNpt7RS, and OPNpt7S) and their cell motility and migration inducing activities were examined in BV2 cells (a microglia cell line).

View Article and Find Full Text PDF

It has been reported that neutrophil extracellular traps (NETs) play important roles in non-infectious diseases. In ischemic stroke, neutrophils infiltrate damaged brain tissue soon after injury and aggravate inflammation. Using a rat permanent MCAO model, we showed citrullinated histone H3 (CitH3, a marker of NETosis) induction in neutrophils in leptomeninges and in peripheral blood soon after MCAO.

View Article and Find Full Text PDF

Ethyl pyruvate (EP) is a simple aliphatic ester of pyruvic acid and has been shown to have protective properties, which have been attributed to its anti-inflammatory, anti-oxidative, and anti-apoptotic functions. In an effort to develop better derivatives of EP, we previously synthesized DEOPA (N,N-diethyl-2-oxopropanamide, a novel isoster of EP) which has greater neuroprotective effects than EP, probably due to its anti-inflammatory and anti-excitotoxic effects. In the present study, we synthesized 3 DEOPA derivatives, in which its diethylamino group was substituted with diisopropylamino, dipropylamino, or diisobutylamino groups.

View Article and Find Full Text PDF

Gastrodin (GAS) is a predominant bioactive constituent of the Chinese herbal medicine Tianma ( Blume). Many authors have reported GAS has the beneficial effect on diverse diseases of the CNS, including epilepsy, Alzheimer's disease, Parkinson's disease, and cerebral ischemia. Here, we report GAS exhibited a robust neuroprotective effect in an Sprague-Dawley rat model of stroke (transient middle cerebral artery occlusion, tMCAO), and show that the underlying molecular mechanism involves its protective effect against Zn-toxicity and its anti-oxidative effects in astrocytes.

View Article and Find Full Text PDF

Post-stroke infection (PSI) is known to worsen functional outcomes of stroke patients and accounts to one-third of stroke-related deaths in hospital. In our previous reports, we demonstrated that massive release of high-mobility group box protein 1 (HMGB1), an endogenous danger signal molecule, is promoted by N-methyl-D-aspartic acid-induced acute damage in the postischemic brain, exacerbating neuronal damage by triggering delayed inflammatory processes. Moreover, augmentation of proinflammatory function of lipopolysaccharides (LPS) by HMGB1 via direct interaction has been reported.

View Article and Find Full Text PDF

Osteopontin (OPN) is a phosphorylated glycoprotein secreted into body fluids by various cell types. OPN contains arginine-glycine-aspartate (RGD) and serine-leucine-alanine-tyrosine (SLAY) motifs that bind to several integrins and mediate a wide range of cellular processes. In the present study, the proangiogenic effects of a 20-amino-acid OPN peptide (OPNpt20) containing RGD and SLAY motifs were examined in human umbilical vein endothelial cells (HUVECs) and in a rat focal cerebral ischemia model.

View Article and Find Full Text PDF

Osteopontin (OPN) is a secreted glycoprotein that is expressed in various tissues, including brain, and mediates a wide range of cellular activities. In a previous study, the authors observed the robust neuroprotective effects of recombinant OPN and of RGD and SLAYGLR-containing OPN-peptide icosamer (OPNpt20) in an animal model of transient focal ischemia, and demonstrated anti-inflammatory and pro-angiogenic effects of OPNpt20 in the postischemic brain. In the present study, we investigated the effects of OPNpt20 on the motility and phagocytic activity of BV2 cells (a microglia cell line).

View Article and Find Full Text PDF

It has been reported that the innate immune response plays important roles in brain ischemia and that the infiltration of blood-derived immune cells is a key initiator of this response. Nerve injury-induced protein 1 (Ninjurin 1, Ninj1) is a cell adhesion molecule responsible for cell-to-cell interactions between immune cells and endothelial cells. In the present study, we investigated the proinflammatory and neuroprotective effects of Ninj1 and a dodecamer peptide harboring Ninj1 N-terminal adhesion motif (N-NAM, Pro26~Asn37) in a rat middle cerebral artery occlusion (MCAO) model of stroke.

View Article and Find Full Text PDF

4-Hydroxybenzyl alcohol (4-HBA) is an important phenolic constituent of Gastrodia elata (GE) Blume, which is used as a traditional herbal medicine in East Asia. Many activities have been reported to underlie the beneficial effects of 4-HBA in brain, such as, anti-oxidative, anti-inflammatory, anti-excitotoxic, and anti-apoptotic effects in neurons and microglia. Here, the authors demonstrate the robust neuroprotective effects of 4-HBA in rat middle cerebral artery occlusion (MCAO) model of stroke, and showed anti-Zn toxicity in neurons and astrocytes as a molecular mechanism contributing to these effects.

View Article and Find Full Text PDF

4-Hydroxybenzyl alcohol (4-HBA) is an important phenolic constituent of Gastrodia elata Blume (GEB), a traditional herbal medicine used in East Asia. Many activities have been reported to underlie the beneficial effects of 4-HBA in the brain, and in particular, its anti-inflammatory, anti-oxidative, and anti-zinc-toxic effects have been implicated in the postischemic brain. Here, the authors investigated the anti-oxidative effect of 4-HBA on astrocytes and sought to identify the underlying molecular mechanisms involved.

View Article and Find Full Text PDF

Ethyl pyruvate (EP) is a simple aliphatic ester of pyruvic acid and has been shown to have robust neuroprotective effects via its anti-inflammatory, anti-oxidative, and anti-apoptotic functions. In an effort to develop novel EP derivatives with greater protective potencies than EP, we generated four EP isosteres, among them the neuroprotective potency of N,N-diethyl-2-oxopropanamide (DEOPA), in which the ethoxy group of EP was replaced with diethylamine, was far greater than that of EP. When DEOPA was administered intravenously (5 mg/kg) to rat middle cerebral artery occlusion (MCAO) model at 6 hrs post-surgery, it suppressed infarct formation, ameliorated neurological and sensory/motor deficits, and inhibited microglial activation and neutrophil infiltrations in the postischemic brain more effectively than EP.

View Article and Find Full Text PDF

2-Hydroxy-4-trifluoromethylbenzoic acid (HTB) is a metabolite of triflusal (TF), and has been reported to exert anti-inflammatory effect. In this study, the authors investigated whether HTB has a neuroprotective effect against ischemic brain injuries. We showed that intravenous administration of HTB (5mg/kg) 30min before or 1, 3, or 6h after middle cerebral artery occlusion (MCAO) reduced brain infarct to 10.

View Article and Find Full Text PDF

Postischemic brain damage in stroke is proceded with complicated pathological events, and so multimodal drug treatments may offer better therapeutic means for improving clinical outcomes. Here, we report robust neuroprotective effects of a novel compound, 2-((2-oxopropanoyl)oxy)-4-(trifluoromethyl)benzoic acid (OPTBA), a 2-hydroxy-4-trifluoromethyl benzoic acid (HTB, a metabolite of triflusal)-pyruvate ester. Intravenous administration of OPTBA (5 mg/kg) 3 or 6 h after middle cerebral artery occlusion (MCAO) in Sprague-Dawley rats reduced infarct volumes to 38.

View Article and Find Full Text PDF

Nerve injury-induced protein-1 (Ninjurin-1, Ninj1) was initially identified as a novel adhesion molecule in rat sciatic nerve and to be up-regulated in neurons and Schwann cells of distal nerve segments after nerve transection or crush injury. Recently, Ninj1 was found to act as a modulator of cell migration, angiogenesis, and apoptosis. Accumulating evidence indicates that innate immune response plays beneficial and deleterious roles in brain ischemia, and the trans-endothelial migration of blood-derived immune cells is key initiator of this response.

View Article and Find Full Text PDF