Naturally occurring peptides display a wide mass distribution after ionization due to the presence of heavy isotopes of C, H, N, O, and S and hydrogen loss. There is a crucial need for sensitive methods that collect as much information as possible about all plasma peptide forms. Statistical analysis of the delta mass distribution of peptide precursors from MS/MS spectra that were matched to 63,077 peptide sequences by X!TANDEM revealed Gaussian peaks representing heavy isotopes and hydrogen loss at integer delta mass values of -3, -2, -1, 0, +1, +2, +3, +4, and +5 Da.
View Article and Find Full Text PDFAging, marked by dysregulated cellular systems, gives rise to a spectrum of age-related disorders, including neurodegeneration, atherosclerosis, immunosenescence, and musculoskeletal issues. These conditions contribute significantly to the global disease burden, posing challenges to health span and economic resources. Current therapeutic approaches, although diverse in mechanism, often fall short in targeting the underlying cellular pathologies.
View Article and Find Full Text PDFAfrican swine fever (ASF) is a severe viral disease with a high mortality rate in domestic and wild pigs, for which no effective vaccine and antiviral drugs are available. The great infectivity of the ASF virus highlights the need for sensitive, simple, and on-site detection assays of ASF. We herein developed a colorimetric sensing strategy for the detection of an ASF-associated miRNA, based on isothermal rolling circle amplification (RCA) and salt-induced gold nanoparticle aggregation.
View Article and Find Full Text PDFPrediabetes can be reversed through lifestyle intervention, but its main pathologic hallmark, insulin resistance (IR), cannot be detected as conveniently as blood glucose testing. In consequence, the diagnosis of prediabetes is often delayed until patients have hyperglycemia. Therefore, developing a less invasive diagnostic method for rapid IR evaluation will contribute to the prognosis of prediabetes.
View Article and Find Full Text PDFIntroduction: Proteomic analysis of human plasma by LC-ESI-MS/MS has discovered a limited number of new cellular protein biomarkers that may be confirmed by independent biochemical methods. Analysis of COVID-19 plasma has indicated the re-purposing of known biomarkers that might be used as prognostic markers of COVID-19 infection. However, multiple molecular approaches have previously indicated that the SARS-COV2 infection cycle is linked to the biology of mitochondria and that the response to infections may involve the action of heme containing oxidative enzymes.
View Article and Find Full Text PDFThe telomerase-specific oncolytic adenovirus Telomelysin and the histone deacetylase inhibitor AR42 have demonstrated anticancer effects in preclinical models of human hepatocellular carcinoma (HCC). However, the clinical development of Telomelysin may be hindered by human antiviral immunity and tumor resistance. Combining oncolytic and epigenetic therapies is a viable approach for treating various cancers.
View Article and Find Full Text PDFThe characteristics of global prevalence and high recurrence of bladder cancer has led numerous efforts to develop new treatments. The spontaneous voiding and degradation of the chemodrug hamper the efficacy and effectiveness of intravesical chemotherapy following tumor resection. Herein, the externally thiolated hollow mesoporous silica nanoparticles (MSN-SH(E)) is fabricated to serve as a platform for improved bladder intravesical therapy.
View Article and Find Full Text PDFBottom-up approaches in creating artificial cells that can mimic natural cells have significant implications for both basic research and translational application. Among various artificial cell models, liposome is one of the most sophisticated systems. By encapsulating proteins and associated biomolecules, they can functionally reconstitute foundational features of biological cells, such as the ability to divide, communicate, and undergo shape deformation.
View Article and Find Full Text PDFIn this study, the chromophore 3,4,9,10-perylenetetracarboxylic diimide (PDI) is anchored with phenyl substituents at the imide N site, followed by thionation, yielding a series of thione products , , , , and , respectively, with = 1, 2, 3, and 4 thione. The photophysical properties are dependent on the number of anchored thiones, where the observed prominent lower-lying absorption is assigned to the S → S(ππ*) transition and is red-shifted upon increasing the number of thiones; the lowest-lying excited state is ascribed to a transition-forbidden S(π*) configuration. All s are non-emissive in solution but reveal an excellent two-photon absorption cross-section of >800 GM.
View Article and Find Full Text PDFUsing multiphoton fluorescent dosimetry, we demonstrate that the clearance dynamics of Indocyanine Green (ICG) in the blood can quickly reveal liver function reserve. In normal rats, the ICG retention rate was below 10% at the 15-minute post-administration; While in the rat with severe hepatocellular carcinoma (HCC), the 15-minute retention rate is over 40% due to poor liver metabolism. With a 785 nm CW laser, the fluorescence dosimeter can evaluate the liver function reserve at a 1/10 clinical dosage of ICG without any blood sampling.
View Article and Find Full Text PDFTriplex DNA nanostructures are one of the most emerging and fascinating self-assembled nanostructures due to their unique nanoparticle-like organization and inherit characteristics. They have attracted numerous interests recently because of their versatile and powerful utility in diverse areas of science and technology, such as clinical or disease diagnosis and stimuli-based drug delivery. This review addresses particularly the utilization of DNA triplexes in the development of biosensors for detecting nucleic acid; strategies in sensing pH, protein activity, ions, or molecules.
View Article and Find Full Text PDFApolipoprotein E containing high-density lipoprotein (apoE-HDL) and apoE-HDL cholesterol (apoE-HDL-C) are recently recognized as potential biomarkers for coronary heart disease (CHD). We herein developed a two-stage, enzyme-assisted, dual-signal aptasensor that enables a useful electrochemical sensing platform for simultaneous determination of apoE-HDL, apoE-HDL-C, and total HDL-C presented in the sample. The detection scheme consists of two subsystems.
View Article and Find Full Text PDFDNA nanotechnology provides powerful tools for developing cancer theranostics. Here we introduce the autonomous surface-nucleolin-guided HCR that leads to the polymerization of G-quadruplex polymer chains, in which the Zn -protoporphyrin IX is intercalated. We demonstrate that MDA-MB-231 (Triple Negative Breast Cancer cells, TNBC) with overexpressed surface nucleolin were able to induce HCR leading to the formation of the Zn PPIX-loaded G-quadruplex polymer chains, while the M10 epithelial breast cells served as control.
View Article and Find Full Text PDFCytomegalovirus (CMV) is the most frequent cause of congenital infection worldwide; congenital CMV may lead to significant mortality, morbidity, or long-term sequelae, such as sensorineural hearing loss. The current study presents a newly designed surface plasmon resonance (SPR) biosensor for CMV-specific microRNAs that does not involve extra care for receptor immobilization or treatment to prevent fouling on bare gold surfaces. The modification-free approach, which utilizes a poly-adenine [poly(A)]-Au interaction, exhibited a high affinity that was comparable to that of the gold-sulfur (Au-S) interaction.
View Article and Find Full Text PDFBackground: Areas of hypoxia are often found in triple-negative breast cancer (TNBC), it is thus more difficult to treat than other types of breast cancer, and may require combination therapies. A new strategy that combined bioreductive therapy with photodynamic therapy (PDT) was developed herein to improve the efficacy of cancer treatment. Our design utilized the characteristics of protoporphyrin IX (PpIX) molecules that reacted and consumed O at the tumor site, which led to the production of cytotoxic reactive oxygen species (ROS).
View Article and Find Full Text PDFA flow-injection analytical (FIA) system was developed for the determination of cholesterol concentrations based on enzymatic reactions that occurred in a cholesterol oxidase (CHO)-immobilized, fused-silica capillary followed by electrochemical detection. The production of hydrogen peroxide from cholesterol in an enzymatic reaction catalyzed by CHO was subsequently oxidized electrochemically at an electrode. Our FlA system demonstrated its cost-effectiveness and utility at an applied potential of 0.
View Article and Find Full Text PDFNon enzymatic detection of NADH and HO is of practical significance for both environmental and biological prospective. However, there is no simple, straight forward electrochemical sensor available for sensing of them in real samples. Addressing this challenge, we report a simple stimuli responsive aminophenol, pre-anodized screen printed carbon electrode (SPCE*/AP) based electrochemical probes for dual detection of NADH and HO.
View Article and Find Full Text PDFLung cancer is the primary cause of cancer-associated mortality worldwide, which makes the identification of reliable lung cancer biomarkers a pressing need for early diagnosis and prognosis. RGS11, which is a regulator of G-protein signaling and also a lung cancer biomarker, plays an important role in cancer-related metastasis. However, trace levels of RGS11 (in the range of pg/mL) in serum samples make it difficult to quantify using currently available enzyme-linked immunosorbent assay (ELISA) kits and, therefore, this hinders progress in the discovery of new approaches for treating lung cancer.
View Article and Find Full Text PDFLuobuma ( L. (AVL)) is a popular beverage in Asia and has been reportedly to be associated with the bioactivities such as cardiotonic, diuretic, antioxidative, and antihypertensive. However, its biofunction as chemoprevention activity is seldom addressed.
View Article and Find Full Text PDFTyramine (4-hydroxyphenethylamine), which is a monoamine metabolized by monoamine oxidase (MAO), exists widely in plants, animals, fermented foods, and salted foods. The incidence of hypertension, or "cheese effect", which is associated with a large dietary intake of tyramine while taking MAO inhibitors has been reported; therefore, the measurement of tyramine is an urgent concern. Herein, an efficient approach that integrates a molecular imprinting polymer for solid phase extraction (MISPE) technique with a sensitive electrochemical sensing platform (SPCE/PEDOT: PSS/AuNP/1-m-4-MP) for the quantification of tyramine is presented.
View Article and Find Full Text PDFAn optically active polyaniline nanomaterial (PANI-Nap), doped with (S)-naproxen, was developed and evaluated as a potent pH sensor. We synthesized the material in one pot by the addition of the dopant, (S)-naproxen, prior to polymerization, followed by the addition of the oxidizing agent (ammonium persulfate) that causes polymerization of the aniline. This green chemistry approach allowed us to take only 1 h to produce a water-soluble and stable nanomaterial.
View Article and Find Full Text PDFWe developed a simple, sensitive inner filter effect (IFE)-based fluorescent assay for sensing H2O2 and cholesterol. In the process, poly(vinylpyrrolidone)-protected gold nanoparticles (PVP-AuNPs) and fluorescent BSA-protected gold nanoclusters (BSA-AuNCs) were used as an IFE absorber/fluorophore pair. PVP-AuNPs can be a powerful absorber to influence the emission of the fluorophore, BSA-AuNCs, in the IFE-based fluorescent assays.
View Article and Find Full Text PDFBackground: Current research suggests that administration of vasopressin to patients with uncontrolled hemorrhagic shock (UHS) can avoid the detrimental effects associated with aggressive fluid resuscitation. However, vasopressin has a short half-life of 10~35 minutes in in vivo use and precludes its use in the pre-hospital setting. To increase the half-life of vasopressin, we proposed to synthesize liposome-encapsulated vasopressin and test it in a rat model of UHS.
View Article and Find Full Text PDFGallic acid (3, 4, 5-trihydroxybenzoic acid, GA), a natural phenolic acid widely found in gallnuts, tea leaves and various fruits, possesses several bioactivities against inflammation, oxidation, and carcinogenicity. The beneficial effect of GA on the reduction of animal hepatofibrosis has been indicated due to its antioxidative property. However, the cytotoxicity of GA autoxidation causing cell death has also been reported.
View Article and Find Full Text PDFThe microRNA, miR-141, is a promising biomarker for prostate cancer. We implement here a two-step sensing platform for the sensitive detection of miR-141. The first step involves the use of semiconductor CdSe/ZnS quantum dots (QDs) modified by FRET quencher-functionalized nucleic acids, that include the recognition sequence for miR-141 and a telomerase primer sequence for the second step of the analytical platform.
View Article and Find Full Text PDF