Publications by authors named "JY Henry"

The emergence of SARS-CoV-2 variants of concern (VOCs) has greatly diminished the neutralizing activity of previously FDA-approved monoclonal antibodies (mAbs), including that of antibody cocktails and of first-generation broadly neutralizing antibodies such as S309 (Sotrovimab). In contrast, antibodies targeting cryptic conformational epitopes of the receptor binding domain (RBD) have demonstrated broad activity against emerging variants, but exert only moderate neutralizing activity, which has so far hindered clinical development. Here, we utilize in vitro display technology to identify and affinity-mature antibodies targeting the cryptic class 6 epitope, accessible only in the "up" conformation of the SARS-CoV-2 spike trimer.

View Article and Find Full Text PDF

DNA i-motif structures are formed in the nuclei of human cells and are believed to provide critical genomic regulation. While the existence, abundance, and distribution of i-motif structures in human cells has been demonstrated and studied by immunofluorescent staining, and more recently NMR and CUT&Tag, the abundance and distribution of such structures in human genomic DNA have remained unclear. Here we utilise high-affinity i-motif immunoprecipitation followed by sequencing to map i-motifs in the purified genomic DNA of human MCF7, U2OS and HEK293T cells.

View Article and Find Full Text PDF

Emerging variants of concern (VOCs) are threatening to limit the effectiveness of SARS-CoV-2 monoclonal antibodies and vaccines currently used in clinical practice; broadly neutralizing antibodies and strategies for their identification are therefore urgently required. Here we demonstrate that broadly neutralizing antibodies can be isolated from peripheral blood mononuclear cells of convalescent patients using SARS-CoV-2 receptor binding domains carrying epitope-specific mutations. This is exemplified by two human antibodies, GAR05, binding to epitope class 1, and GAR12, binding to a new epitope class 6 (located between class 3 and 5).

View Article and Find Full Text PDF

Genetically distinct variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have emerged since the start of the COVID-19 pandemic. Over this period, we developed a rapid platform (R-20) for viral isolation and characterization using primary remnant diagnostic swabs. This, combined with quarantine testing and genomics surveillance, enabled the rapid isolation and characterization of all major SARS-CoV-2 variants circulating in Australia in 2021.

View Article and Find Full Text PDF
Article Synopsis
  • Viral mutations are a growing issue as they may reduce the effectiveness of current SARS-CoV-2 vaccines, highlighting the need for second-generation vaccines that can target conserved regions in the virus.
  • Researchers immunized mice with various sarbecovirus receptor-binding domains to discover antibodies that target these critical sites, finding that while some antibodies were broadly reactive, they did not neutralize the virus effectively.
  • The study identified that potent neutralizing antibodies against SARS-CoV-2 variants were linked to specific structural features, particularly a longer antibody segment that blocks virus interactions with human cells, paving the way for improved vaccine strategies.
View Article and Find Full Text PDF

Antibodies against coronavirus spike protein potently protect against infection and disease, but whether such protection can be extended to variant coronaviruses is unclear. This is exemplified by a set of iconic and well-characterized monoclonal antibodies developed after the 2003 SARS outbreak, including mAbs m396, CR3022, CR3014 and 80R, which potently neutralize SARS-CoV-1, but not SARS-CoV-2. Here, we explore antibody engineering strategies to change and broaden their specificity, enabling nanomolar binding and potent neutralization of SARS-CoV-2.

View Article and Find Full Text PDF

Intratumoral regulatory T cell (Treg) abundance associates with diminished anti-tumor immunity and poor prognosis in human cancers. Recent work demonstrates that CD25, the high affinity receptor subunit for IL-2, is a selective target for Treg depletion in mouse and human malignancies; however, anti-human CD25 antibodies have failed to deliver clinical responses against solid tumors due to bystander IL-2 receptor signaling blockade on effector T cells, which limits their anti-tumor activity. Here we demonstrate potent single-agent activity of anti-CD25 antibodies optimized to deplete Tregs whilst preserving IL-2-STAT5 signaling on effector T cells, and demonstrate synergy with immune checkpoint blockade in vivo.

View Article and Find Full Text PDF
Article Synopsis
  • - Tumour mutational burden (TMB) can predict how well patients with non-small cell lung cancer (NSCLC) will respond to immunotherapy, but persistent exposure to antigens can harm T cell function.
  • - Research found that higher TMB led to changes in T cell differentiation in untreated NSCLC, such as fewer progenitor-like CD4 T cells and more dysfunctional CD8 and CD4 T cells that resemble those activated by neoantigens.
  • - A gene signature indicating the shift from healthy to dysfunctional T cell states was linked to poorer survival rates, highlighting the need for new therapeutic strategies to improve outcomes in NSCLC patients.
View Article and Find Full Text PDF

Before squamous cell lung cancer develops, precancerous lesions can be found in the airways. From longitudinal monitoring, we know that only half of such lesions become cancer, whereas a third spontaneously regress. Although recent studies have described the presence of an active immune response in high-grade lesions, the mechanisms underpinning clinical regression of precancerous lesions remain unknown.

View Article and Find Full Text PDF

Purpose: Immune dysregulation is described in multiple myeloma. While preclinical models suggest a role for altered T-cell immunity in disease progression, the contribution of immune dysfunction to clinical outcomes remains unclear. We aimed to characterize marrow-infiltrating T cells in newly diagnosed patients and explore associations with outcomes of first-line therapy.

View Article and Find Full Text PDF

The interplay between an evolving cancer and a dynamic immune microenvironment remains unclear. Here we analyse 258 regions from 88 early-stage, untreated non-small-cell lung cancers using RNA sequencing and histopathology-assessed tumour-infiltrating lymphocyte estimates. Immune infiltration varied both between and within tumours, with different mechanisms of neoantigen presentation dysfunction enriched in distinct immune microenvironments.

View Article and Find Full Text PDF

With the use of a mouse model expressing human Fc-gamma receptors (FcγRs), we demonstrated that antibodies with isotypes equivalent to ipilimumab and tremelimumab mediate intra-tumoral regulatory T (Treg) cell depletion in vivo, increasing the CD8 to Treg cell ratio and promoting tumor rejection. Antibodies with improved FcγR binding profiles drove superior anti-tumor responses and survival. In patients with advanced melanoma, response to ipilimumab was associated with the CD16a-V158F high affinity polymorphism.

View Article and Find Full Text PDF

CD25 is expressed at high levels on regulatory T (Treg) cells and was initially proposed as a target for cancer immunotherapy. However, anti-CD25 antibodies have displayed limited activity against established tumors. We demonstrated that CD25 expression is largely restricted to tumor-infiltrating Treg cells in mice and humans.

View Article and Find Full Text PDF

Inflammation triggers the differentiation of Ly6C monocytes into microbicidal macrophages or monocyte-derived dendritic cells (moDCs). Yet, it is unclear whether environmental inflammatory cues control the polarization of monocytes toward each of these fates or whether specialized monocyte progenitor subsets exist before inflammation. Here, we have shown that naive monocytes are phenotypically heterogeneous and contain an NR4A1- and Flt3L-independent, CCR2-dependent, Flt3CD11cMHCIIPU.

View Article and Find Full Text PDF
Article Synopsis
  • Tumors develop mutations as they grow, leading to neoantigens that can affect how well patients respond to immune therapies like checkpoint inhibitors.
  • The study found a link between the number of clonal neoantigens in lung adenocarcinomas and patient survival, suggesting that the diversity of these neoantigens within tumors plays a crucial role in immune response.
  • Patients with advanced lung cancer or melanoma showed better responses to immune therapies when their tumors had a higher presence of clonal neoantigens, highlighting the importance of understanding neoantigen diversity for improving cancer treatments.
View Article and Find Full Text PDF

Cytomegalovirus (CMV) infection is responsible for substantial morbidity and mortality after allogeneic hematopoietic stem cell transplant. T-cell immunity is critical for control of CMV infection, and correction of the immune deficiency induced by transplant is now clinically achievable by the adoptive transfer of donor-derived CMV-specific T cells. It is notable, however, that most clinical studies of adoptive T- cell therapy exclude patients with graft-versus-host disease (GVHD) from receiving systemic corticosteroid therapy, which impairs cellular immunity.

View Article and Find Full Text PDF

Cytomegalovirus (CMV) remains a significant cause of morbidity after allogeneic hematopoietic stem cell transplantation (HSCT). Clinical risk varies according to a number of factors, including recipient/donor CMV serostatus. Current dogma suggests risk is greatest in seropositive recipient (R+)/seronegative donor (D-) transplants and is exacerbated by T-cell depletion.

View Article and Find Full Text PDF

Treatment with monoclonal antibody specific for cytotoxic T lymphocyte-associated antigen 4 (CTLA-4), an inhibitory receptor expressed by T lymphocytes, has emerged as an effective therapy for the treatment of metastatic melanoma. Although subject to debate, current models favor a mechanism of activity involving blockade of the inhibitory activity of CTLA-4 on both effector (T eff) and regulatory (T reg) T cells, resulting in enhanced antitumor effector T cell activity capable of inducing tumor regression. We demonstrate, however, that the activity of anti-CTLA-4 antibody on the T reg cell compartment is mediated via selective depletion of T reg cells within tumor lesions.

View Article and Find Full Text PDF

The IMiDs(®) immunomodulatory compounds lenalidomide and pomalidomide are agents with anti-inflammatory, immunomodulatory and anti-cancer activity. An excellent success rate has been shown for multiple myeloma in phase I/II clinical trials leading to Food and Drug Administration approval of lenalidomide. One mechanism by which these drugs could enhance anti-tumour immunity may be through enhanced dendritic cell (DC) function.

View Article and Find Full Text PDF

We measured the low energy excitation spectrum of α'-NaV (2)O(5) across its charge ordering and crystallographic phase transition with resonant inelastic x-ray scattering (RIXS) at the V L(3) edge. Exploiting the polarization dependence of the RIXS signal and the high resolution of the data, we reveal the excitation across the insulating gap at 1 eV and identify the excitations from occupied 3d(xy) bonding orbitals to unoccupied bonding 3d(xy) and 3d(yz)/3d(xz) orbitals. Furthermore we observe a progressive change of the electronic structure of α'-NaV (2)O(5) induced by soft x-ray irradiation, with the appearance of features characteristic of sodium deficient Na(x)V (2)O(5) (x < 1).

View Article and Find Full Text PDF

Background: In this study, we investigated the effects of combining lenalidomide and docetaxel on in vitro and in vivo models of prostate cancer as a potential strategy for treatment of castrate resistant prostate cancer (CRPC).

Methods: The effects of combining lenalidomide and docetaxel on proliferation, apoptosis, invasive potential, anchorage independent growth, and p53 activation in the PC3 and DU145 prostate cell lines were investigated. The effects of the lenalidomide and docetaxel combination on LNCaP prostate cancer cell growth and invasiveness in vitro was also studied.

View Article and Find Full Text PDF

Background: Thalidomide and lenalidomide are FDA approved for the treatment of multiple myeloma and, along with pomalidomide, are being investigated in various other cancers. Although these agents display immunomodulatory, anti-angiogenic and anti-apoptotic effects, little is known about their primary mode of therapeutic action in patients with cancer.

Methods: As part of a continuing research effort, we have investigated the effects of these agents on the metastatic capacity of murine colorectal cancer cell lines both in vivo and in vitro.

View Article and Find Full Text PDF

Thalidomide and lenalidomide are FDA approved for the treatment of multiple myeloma, and along with pomalidomide are being investigated in a variety of other cancers. Although these agents display immunomodulatory, anti-angiogenic and anti-apoptotic effects, little is known about the primary mode of therapeutic action in patients with cancer. This paper describes a microarray study of the in vitro and in vivo effects of these drugs, and contrasts the difference in gene profiles achieved in the two models.

View Article and Find Full Text PDF