Publications by authors named "JW Cable"

Recent work showed that the combination of 50 microM glutethimide plus 50 microM ferric nitrilotriacetate (FeNTA) synergistically induces heme oxygenase (HO) activity in cultured chick embryo liver cells (Cable et al., Biochem Biophys Res Commun 168: 176-181, 1990). This synergistic induction is due to increased heme synthesis, which then acts to increase HO gene transcription.

View Article and Find Full Text PDF

Enterally administered, heme is a good source of iron in humans and other animals, but the metabolism of heme by enterocytes has not been fully characterized. Caco-2 cells in culture provide a useful model for studying cells that resemble small intestinal epithelium, both morphologically and functionally. In this paper we show that heme oxygenase, the rate-controlling enzyme of heme catabolism, is present in abundance in Caco-2 cells, and that levels of its mRNA and activity can be increased by exposure of the cells to heme or metal ions (cadmium, cobalt).

View Article and Find Full Text PDF

Heme- and tin-chelated metalloporphyrins are known to decrease the activity of hepatic delta-amino-levulinate synthase, the rate-controlling enzyme of heme synthesis. We performed experiments in primary chick embryo liver cells with tin-, zinc- and copper-chelated porphyrins to assess their effects on activities of delta-aminolevulinate synthase induced by prior treatment of cells with glutethimide and ferric nitrilotriacetate. These different metalloporphyrins were tested to form the experimental foundation for eventual studies in patients with acute porphyrias, in which uncontrolled induction of hepatic delta-amino-levulinate synthase, which plays a key role in pathogenesis of disease.

View Article and Find Full Text PDF

Camphor, alpha-pinene (the major component of turpentine), and thujone (a constituent in the liqueur called absinthe) produced an increase in porphyrin production in primary cultures of chick embryo liver cells. In the presence of desferrioxamine (an iron chelator which inhibits heme synthesis and thereby mimics the effect of the block associated with acute porphyria), the terpenes enhanced porphyrin accumulation 5- to 20-fold. They also induced synthesis of the rate-controlling enzyme for the pathway, 5-aminolevulinic acid synthase, which was monitored both spectrophotometrically and immunochemically.

View Article and Find Full Text PDF