Publications by authors named "JV Badding"

Topological magnetic monopoles (TMMs), also known as hedgehogs or Bloch points, are three-dimensional (3D) non-local spin textures that are robust to thermal and quantum fluctuations due to the topology protection. Although TMMs have been observed in skyrmion lattices, spinor Bose-Einstein condensates, chiral magnets, vortex rings and vortex cores, it has been difficult to directly measure the 3D magnetization vector field of TMMs and probe their interactions at the nanoscale. Here we report the creation of 138 stable TMMs at the specific sites of a ferromagnetic meta-lattice at room temperature.

View Article and Find Full Text PDF

Nanothreads are emerging one-dimensional sp-hybridized materials with high predicted tensile strength and a tunable band gap. They can be synthesized by compressing aromatic or nonaromatic small molecules to pressures ranging from 15-30 GPa. Recently, new avenues are being sought that reduce the pressure required to afford nanothreads; the focus has been placed on the polymerization of molecules with reduced aromaticity, favorable stacking, and/or the use of higher reaction temperatures.

View Article and Find Full Text PDF

Semiconductor metalattices consisting of a linked network of three-dimensional nanostructures with periodicities on a length scale <100 nm can enable tailored functional properties due to their complex nanostructuring. For example, by controlling both the porosity and pore size, thermal transport in these phononic metalattices can be tuned, making them promising candidates for efficient thermoelectrics or thermal rectifiers. Thus, the ability to characterize the porosity, and other physical properties, of metalattices is critical but challenging, due to their nanoscale structure and thickness.

View Article and Find Full Text PDF

The molecular structure of nanothreads produced by the slow compression of C-furan was studied by advanced solid-state NMR. Spectral editing showed that >95% of carbon atoms were bonded to one hydrogen (C-H) and that there were 2-4% CH, 0.6% C═O, and <0.

View Article and Find Full Text PDF

Limited supramolecular strategies have been utilized to synthesize sequence-defined polymers, despite the prominence of noncovalent interactions in materials design. Herein, we illustrate the utility of 'sacrificial' aryl-perfluoroaryl supramolecular synthons to synthesize sp-hybridized nanothreads from sp-enriched reactants. Our strategy features A-B reactant pairs in the form of a phenol:pentafluorophenol co-crystal that is preorganized for an electronically-biased and sequence-defined polymerization.

View Article and Find Full Text PDF

Carbon nanothreads, which are one-dimensional sp-rich polymers, combine high tensile strength with flexibility owing to subnanometer widths and diamond-like cores. These extended carbon solids are constructed through pressure-induced polymerization of sp molecules such as benzene. Whereas a few examples of carbon nanothreads have been reported, the need for high onset pressures (≥17 GPa) to synthesize them precludes scalability and limits scope.

View Article and Find Full Text PDF

Today fiber lasers in the visible to near-infrared region of the spectrum are well known, however mid-infrared fiber lasers have only recently approached the same commercial availability and power output. There has been a push to fabricate optical fiber lasers out of crystalline materials which have superior mid-IR performance and the ability to directly generate mid-IR light. However, these materials cannot currently be fabricated into an optical fiber via traditional means.

View Article and Find Full Text PDF

Metalattices are crystalline arrays of uniform particles in which the period of the crystal is close to some characteristic physical length scale of the material. Here, we explore the synthesis and properties of a germanium metalattice in which the ∼70 nm periodicity of a silica colloidal crystal template is close to the ∼24 nm Bohr exciton radius of the nanocrystalline Ge replica. The problem of Ge surface oxidation can be significant when exploring quantum confinement effects or designing electronically coupled nanostructures because of the high surface area to volume ratio at the nanoscale.

View Article and Find Full Text PDF

Metalattices are artificial 3D solids, periodic on sub-100 nm length scales, that enable the functional properties of materials to be tuned. However, because of their complex structure, predicting and characterizing their properties is challenging. Here we demonstrate the first nondestructive measurements of the mechanical and structural properties of metalattices with feature sizes down to 14 nm.

View Article and Find Full Text PDF

Controlling the thermal conductivity of semiconductors is of practical interest in optimizing the performance of thermoelectric and phononic devices. The insertion of inclusions of nanometer size in a semiconductor is an effective means of achieving such control; it has been proposed that the thermal conductivity of silicon could be reduced to 1 W/m/K using this approach and that a minimum in the heat conductivity would be reached for some optimal size of the inclusions. Yet the experimental verification of this design rule has been limited.

View Article and Find Full Text PDF

Relative to the rich library of small-molecule organics, few examples of ordered extended (i.e., nonmolecular) hydrocarbon networks are known.

View Article and Find Full Text PDF

Nanothreads are one-dimensional sp hydrocarbons that pack within pseudohexagonal crystalline lattices. They are believed to lack long-range order along the thread axis and also lack interthread registry. Here we investigate the phase behavior of thiophene up to 35 GPa and establish a pressure-induced phase transition sequence that mirrors previous observations in low-temperature studies.

View Article and Find Full Text PDF

Carbon nanothreads are a new one-dimensional sp-bonded nanomaterial of CH stoichiometry synthesized from benzene at high pressure and room temperature by slow solid-state polymerization. The resulting threads assume crystalline packing hundreds of micrometers across. We show high-resolution electron microscopy (HREM) images of hexagonal arrays of well-aligned thread columns that traverse the 80-100 nm thickness of the prepared sample.

View Article and Find Full Text PDF

A one-dimensional (1D) sp carbon nanomaterial with high lateral packing order, known as carbon nanothreads, has recently been synthesized by slowly compressing and decompressing crystalline solid benzene at high pressure. The atomic structure of an individual nanothread has not yet been determined experimentally. We have calculated the C nuclear magnetic resonance (NMR) chemical shifts, chemical shielding tensors, and anisotropies of several axially ordered and disordered partially saturated and fully saturated nanothreads within density functional theory and systematically compared the results with experimental solid-state NMR data to assist in identifying the structures of the synthesized nanothreads.

View Article and Find Full Text PDF

Carbon nanothreads are a new type of one-dimensional sp-carbon nanomaterial formed by slow compression and decompression of benzene. We report characterization of the chemical structure of C-enriched nanothreads by advanced quantitative, selective, and two-dimensional solid-state nuclear magnetic resonance (NMR) experiments complemented by infrared (IR) spectroscopy. The width of the NMR spectral peaks suggests that the nanothread reaction products are much more organized than amorphous carbon.

View Article and Find Full Text PDF

This study uses in situ vibrational spectroscopy to probe nitrogen adsorption to porous carbon materials, including single-wall carbon nanotubes and Maxsorb super-activated carbon, demonstrating how the nitrogen Raman stretch mode is perturbed by adsorption. In all porous carbon samples upon N2 physisorption in the mesopore filling regime, the N2 Raman mode downshifts by ∼2 cm-1, a downshift comparable to liquid N2. The relative intensity of this mode increases as pressure is increased to saturation, and trends in the relative intensity parallel the volumetric gas adsorption isotherm.

View Article and Find Full Text PDF

Colloidal crystals with specific electronic, optical, magnetic, vibrational properties, can be rationally designed by controlling fundamental parameters such as chemical composition, scale, periodicity and lattice symmetry. In particular, silica nanospheres -which assemble to form colloidal crystals- are ideal for this purpose, because of the ability to infiltrate their templates with semiconductors or metals. However characterization of these crystals is often limited to techniques such as grazing incidence small-angle scattering that provide only global structural information and also often require synchrotron sources.

View Article and Find Full Text PDF

Carbon nanothreads are a new one-dimensional sp carbon nanomaterial. They assemble into hexagonal crystals in a room temperature, nontopochemical solid-state reaction induced by slow compression of benzene to 23 GPa. Here we show that pyridine also reacts under compression to form a well-ordered sp product: CNH carbon nitride nanothreads.

View Article and Find Full Text PDF

The chemical stability of solid cubane under high-pressure was examined with in situ Raman spectroscopy and synchrotron powder X-ray diffraction (PXRD) in a diamond anvil cell (DAC) up to 60 GPa. The Raman modes associated with solid cubane were assigned by comparing experimental data with calculations based on density functional perturbation theory, and low-frequency lattice modes are reported for the first time. The equation of state of solid cubane derived from the PXRD measurements taken during compression gives a bulk modulus of 14.

View Article and Find Full Text PDF

The 1 : 1 acetylene-benzene cocrystal, CH·CH, was synthesized under pressure in a diamond anvil cell (DAC) and its evolution under pressure was studied with single-crystal X-ray diffraction and Raman spectroscopy. CH·CH is stable up to 30 GPa, nearly 10× the observed polymerization pressure for molecular acetylene to polyacetylene. Upon mild heating at 30 GPa, the cocrystal was observed to undergo an irreversible transition to a mixture of amorphous hydrocarbon and a crystalline phase with similar diffraction to i-carbon, a nanodiamond polymorph currently lacking a definitive structure.

View Article and Find Full Text PDF

A magnetic, metallic inverse opal fabricated by infiltration into a silica nanosphere template assembled from spheres with diameters less than 100 nm is an archetypal example of a "metalattice". In traditional quantum confined structures such as dots, wires, and thin films, the physical dynamics in the free dimensions is typically largely decoupled from the behavior in the confining directions. In a metalattice, the confined and extended degrees of freedom cannot be separated.

View Article and Find Full Text PDF

Synthesis of well-ordered reduced dimensional carbon solids with extended bonding remains a challenge. For example, few single-crystal organic monomers react under topochemical control to produce single-crystal extended solids. We report a mechanochemical synthesis in which slow compression at room temperature under uniaxial stress can convert polycrystalline or single-crystal benzene monomer into single-crystalline packings of carbon nanothreads, a one-dimensional sp carbon nanomaterial.

View Article and Find Full Text PDF

The high-pressure behavior of lithium dicyanamide (LiN(CN)) was studied with in situ Raman and infrared (IR) spectroscopies, and synchrotron angle-dispersive powder X-ray diffraction (PXRD) in a diamond anvil cell (DAC) to 22 GPa. The fundamental vibrational modes associated with molecular units were assigned using a combination of experimental data and density functional perturbation theory. Some low-frequency modes were observed for the first time.

View Article and Find Full Text PDF

The high-pressure reactivity of caged olefinic carbons and polyatomic aromatic hydrocarbons (PAHs) are of interest because of their ability to produce unique C-H networks with varying geometries and bonding environments. Here, we have selected triptycene to explore the creation of pores via high-pressure polymerization. Triptycene has internal free volume on a molecular scale that arises due to its paddle wheel-like structure, formed via fusion of three benzene rings via sp-hybridized bridgehead carbon sites.

View Article and Find Full Text PDF

On page 5939, J. V. Badding and co-workers describe the unrolling of a flexible hydrogenated amorphous silicon solar cell, deposited by high-pressure chemical vapor deposition.

View Article and Find Full Text PDF