In a recent report we demonstrated efficient collection of emission by coupling to surface plasmons on a thin silver film, resulting in a directional signal in the glass substrate. We call the phenomenon surface plasmon coupled emission (SPCE). In the present report we examined sulforhodamine 101 (S101) in thin polymer films on 50 nm thick gold films on glass.
View Article and Find Full Text PDFFluorescein-labeled antibodies are widely used in clinical assays and fluorescence microscopy. The fluorescent signal per labeled antibody is limited by fluorescein self-quenching, which occurs when the antibody is heavily labeled with multiple fluoresceins. We examined immunoglobulin G (IgG) when labeled with 0.
View Article and Find Full Text PDFWe describe a new approach for glucose determination with tunable glucose dynamic sensing ranges, dependent on the properties of new nanosensors, which are comprised of Con A-aggregated dextran-coated gold colloids. Dextran-coated 10 or 20 nm gold colloids can be aggregated with Con A in a controlled fashion, the change in absorbance at an arbitrary wavelength used to monitor the extent of aggregation, which can be optimized for sensing. The presence of any glucose competitively binds with Con A, dissociating the dextran-coated colloids, affording for the reverse gold plasmon change and hence the determination of glucose concentrations.
View Article and Find Full Text PDFSurface plasmon-coupled emission (SPCE) is the directional radiation of light into a substrate due to excited fluorophores above a thin metal film. To date, SPCE has only been observed with visible wavelengths using silver or gold films. We now show that SPCE can be observed in the ultraviolet region of the spectrum using thin (20 nm) aluminum films.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
July 2004
Roughened silver electrodes are widely used for surface-enhanced Raman scattering (SERS). We tested roughened silver electrodes for metal-enhanced fluorescence. Constant current between two silver electrodes in pure water resulted in the growth of fractal-like structures on the cathode.
View Article and Find Full Text PDFProc SPIE Int Soc Opt Eng
July 2004
In this presentation we describe a novel methodology for ultra-sensitive fluorescence immunoassays based on a new class of fluorescent biomarkers, which are strongly enhanced by nano-size metallic particles. Specifically, we discuss development of the immunoassay on the surfaces coated with metallic particles for high sensitivity detection of cardiac markers. This technology will allow detection of the biomarkers in serum and blood without separation and amplification steps.
View Article and Find Full Text PDFWe describe the development of a novel generic approach to fluorescence sensing based on metal-enhanced fluorescence (MEF). This work follows our initial reports of radiative decay engineering (RDE), where we experimentally demonstrated dramatic signal enhancements of fluorophores positioned close to surface-bound silver nanostructures. The attractive changes in spectral properties of fluorophores includes increased rates of excitation, increased quantum yields, decreased fluorescence lifetimes with an increased photostability, and drastically increased rates of multi-photon excitation.
View Article and Find Full Text PDFDirectional fluorescence emission of a sulforhodamine 101 in polyvinyl alcohol film has been observed from samples deposited on semi-transparent silver mirror. The fully p-polarized fluorescence emerges through the glass prism in form of hollow cone. The angle of this cone of emission depends on the thickness of the sample, and does not depend on the mode of excitation.
View Article and Find Full Text PDFNoble metal nanoparticles are well known for their strong interactions with light through the resonant excitations of the collective oscillations of the conduction electrons on the particles, the so-called surface plasmon resonances. The close proximity of two nanoparticles is known to result in a red-shifted resonance wavelength peak, due to near-field coupling. We have subsequently employed this phenomenon and developed a new approach to glucose sensing, which is based on the aggregation and disassociation of 20-nm gold particles and the changes in plasmon absorption induced by the presence of glucose.
View Article and Find Full Text PDFN-(2-mercaptopropionyl)glycine (tiopronin) monolayer-protected silver particles were partially displaced by single-stranded oligonucleotides through ligand exchanges. The oligonucleotide-displaced particles could be hybridized with complementary fluorophore-labeled oligonucleotides. Both the oligonucleotide-displaced and hybridized particles could be aggregated by electrostatic interactions with salt in buffer solution, and the aggregates displayed enhanced luminescence from fluorophores.
View Article and Find Full Text PDFWe characterize a new water soluble fluorescent probe sensitive to changes in pH. The new probe shows spectral shifts and intensity changes in different pH media, in a wavelength ratiometric and colorimetric manner. Subsequently, changes in pH can readily be determined around the physiological level.
View Article and Find Full Text PDFWe have developed a technology for continuous tear glucose monitoring, and therefore potentially blood glucose monitoring, using a daily use, disposable contact lens embedded with sugar-sensing boronic acid containing fluorophores. The novelty of our approach is two fold. Firstly, the notion of sensing extremely low glucose concentrations in tears by our approach, and secondly, the unique compatibility of our new probes with the internal environment of the disposable, off-the-shelf, contact lenses, chosen because the physiological compatibility of disposable plastic contact lenses has already been assessed and optimized with regard to vision correction, size and oxygen/analyte permeability.
View Article and Find Full Text PDFWe examined the fluorescent spectral properties of fluorescein-labeled DNA oligomers when directly bound to metallic silver particles via a terminal sulfhydryl group. We found a 12-fold increase in fluorescence intensity and 25-fold decrease in lifetime for a fluorescein residue positioned 23 nucleotides from the silver surface compared to labeled oligomers in free solution. Similar results were found for a 23-mer labeled with five fluorescein residues.
View Article and Find Full Text PDFThe authors describe a new approach to measuring DNA hybridization based on surface plasmon-coupled emission (SPCE). SPCE is the resonance coupling of excited fluorophores with electron motions in thin metal films, resulting in efficient transfer of energy through the film and radiation into the glass substrate. The authors evaluated the use of SPCE for detection of DNA hybridization.
View Article and Find Full Text PDFWe described a new approach to immunoassays using surface plasmon-coupled emission (SPCE). Fluorescence is visually isotropic in space, so that the sensitivity is limited in part by the light collection efficiency. By the use of SPCE, we can efficiently collect the emission and convert it to a cone-like directional beam in a glass substrate.
View Article and Find Full Text PDFWe characterize three new fluorescent probes that show both spectral shifts and intensity changes in the presence of aqueous cyanide, allowing for both excitation and fluorescence emission wavelength ratiometric and colorimetric sensing. The relatively high binding constants of the probes for cyanide enables a distinct colorimetric change to be visually observed with as little as 10 microM cyanide. The response of the new probes is based on the ability of the boronic acid group to interact with the CN(-) anion, changing from the neutral form of the boronic acid group R-B(OH)(2) to the anionic R-B(-)(OH)3 form, which is an electron-donating group.
View Article and Find Full Text PDFThe effect of temperature and glucose binding on the structure of the galactose/glucose-binding protein from Escherichia coli was investigated by circular dichroism, Fourier transform infrared spectroscopy, and steady-state and time-resolved fluorescence. The data showed that the glucose binding induces a moderate change of the secondary structure content of the protein and increases the protein thermal stability. The infrared spectroscopy data showed that some protein stretches, involved in alpha-helices and beta strand conformations, are particularly sensitive to temperature.
View Article and Find Full Text PDFWe have tested the feasibility of tear glucose sensing using a daily, disposable contact lens embedded with boronic acid-containing fluorophores as a potential alternative to current invasive glucose-monitoring techniques. Our findings show that our approach may, indeed, be suitable for the continuous monitoring of tear glucose levels in the range 50-500 microM, which track blood glucose levels that are approximately 5-10-fold higher. We compare the response of the boronic acid probes in the contact lens to solution-based measurements and can conclude that both the pH and polarity within the contact lens need to be considered with respect to choosing/designing and optimizing glucose-sensing probes for contact lenses.
View Article and Find Full Text PDFBiochem Biophys Res Commun
January 2004
We describe a new method for multi-wavelength immunoassays using surface plasmon-coupled emission (SPCE). This phenomenon is coupling of excited fluorophores with a nearby thin metal film, in our case silver, resulting in strongly directional emission into the underlying glass substrate. The angle at which the radiation propagate through the prism depends on the surface plasmon angle for the relevant wavelength.
View Article and Find Full Text PDFFluorescence is typically isotropic in space and collected with low efficiency. In this paper we describe surface plasmon-coupled emission (SPCE), which displays unique optical properties and can be collected with an efficiency near 50%. SPCE occurs for fluorophores within about 200 nm of a thin metallic film, in our case a 50-nm-thick silver film on a glass substrate.
View Article and Find Full Text PDFAnal Biochem
January 2004
A new method of fluorescence detection that promises to increase sensitivity by 20- to 1000-fold is described. This method will also decrease the contribution of sample autofluorescence to the detected signal. The method depends on the coupling of excited fluorophores with the surface plasmon resonance present in thin metal films, typically silver and gold.
View Article and Find Full Text PDFEnhanced fluorescence emission intensity from fluorescein was observed on glass slides covered with thin films of silver nanoparticles using a confocal laser-scanning microscope. The silver nanoparticle film increased the emission intensity of fluorescein by an average of at least three-fold in the area studied. Statistics are given on the enhancement of individual areas of the silver particle film with a resolution of approximately 210 nm.
View Article and Find Full Text PDFChemically deposited silver particles are widely used for surface-enhanced Raman scattering (SERS) and more recently for surface-enhanced fluorescence (SEF), also known as metal-enhanced fluorescence (MEF). We now show that metallic silver deposited by laser illumination results in an approximately 7-fold increased intensity of locally bound indocyanine green. The increased intensity is accompanied by a decreased lifetime and increased photostability.
View Article and Find Full Text PDFResonance energy transfer (RET) is typically limited to distances below 60 A, which can be too short for some biomedical assays. We examined a new method for increasing the RET distances by placing donor- and acceptor-labeled DNA oligomers between two slides coated with metallic silver particles. A N,N'-(dipropyl)-tetramethylindocarbocyanine donor and a N,N'-(dipropyl)-tetramethylindodicarbocyanine acceptor were covalently bound to opposite 5' ends of complementary 23 base pair DNA oligomers.
View Article and Find Full Text PDFThe fluorescence properties of a monolayer of labeled avidin molecules were studied near silver island films. We first adsorbed a monolayer of biotinylated-BSA as a base that was used to capture labeled avidin molecules. For labeled avidin on silver island films, we observed an increase of the fluorescence intensity of between 18 and 80 with one-photon excitation and up to several hundredfold or larger with two-photon excitation.
View Article and Find Full Text PDF