Publications by authors named "JR Baena"

A flow-through microdispenser has been coupled to a micro HPLC separation system and used as a solvent elimination interface for Fourier transform infrared (FTIR) and Raman spectroscopic detection of the separated compounds. Using the microdispenser picoliter sized droplets can be generated and deposited on an appropriate target placed on a computerized x, y-stage. Evaporation of volatile solvent and buffer is rapid and allows analysis of the obtained dry deposits by various techniques.

View Article and Find Full Text PDF

Absorption spectra of aqueous solution of ''chaotropes'' (structure maker) and ''kosmotropes'' (structure breaker) have been recorded in the mid-infrared (MIR) and terahertz (THz) spectral region. A different impact of the two groups of solutes on the absorption spectrum of water was found in the recorded THz spectra. A concentration-dependent increased absorption across the investigated THz spectral region (0.

View Article and Find Full Text PDF

An automated approach for rapid on-line monitoring of the solid and liquid phases present in bioprocesses based on mid-IR Fourier transform spectrometry is introduced. The principles of this new approach are presented using the example of the quantitative and qualitative analysis of poly(beta-hydroxybutyric acid) (PHB) accumulated in living bacterial cells as well as dissolved glucose during two 27-h fermentation processes. FT-IR spectra were recorded on-line using a diamond-attenuated total reflection (ATR) cell connected to the fermentation broth by means of a computer-controlled flow system.

View Article and Find Full Text PDF

Advances in instrumentation are making Raman spectroscopy the tool of choice for an increasing number of (bio)chemical applications. Raman is an interesting option for several reasons, including the sensitivity to small structural changes, non-invasive sampling capability, minimal sample preparation, and high spatial resolution in the case of Raman micro-spectroscopy. Herein we discuss the most recent technical approaches employed, from the well-known surface enhanced resonance Raman spectroscopy to non-linear Raman techniques such as coherent anti-stokes Raman spectroscopy (CARS) and related techniques.

View Article and Find Full Text PDF

A new method for on-line monitoring of fermentations using mid-infrared (MIR) spectroscopy has been developed. The method has been used to predict the concentrations of glucose and ethanol during a baker's yeast fermentations. A completely automated flow system was employed as an interface between the bioprocess under study and the Fourier transform infrared (FT-IR) spectrometer, which was equipped with a flow cell housing a diamond attenuated total reflection (ATR) element.

View Article and Find Full Text PDF

A method for the direct determination of carbon dioxide in aqueous solutions using a room-temperature mid-infrared (MIR) quantum cascade laser at 2330 cm(-1) is reported. The absorption values of different carbon dioxide concentrations were measured in a 119 microm CaF2 flow-through cell. An optical system made of parabolic mirrors was used to probe the flow cell and to focus the laser beam on the mercury cadmium telluride (MCT) detector.

View Article and Find Full Text PDF

Microstructures constructed from SU-8 polymer and produced on CaF(2) base plates have been developed for microchip-based analysis systems used to perform FTIR spectroscopic detection using mid-IR synchrotron radiation. The high brilliance of the synchrotron source enables measurements at spot sizes at the diffraction limit of mid-IR radiation. This corresponds to a spatial resolution of a few micrometers (5-20 microm).

View Article and Find Full Text PDF

A new method for the speciation of butyltin compounds by solid phase extraction and direct injection using gas chromatography-mass spectrometry (GC/MS) is described. The compounds were complexed with sodium diethyldithiocarbamate and retained on a C60 sorbent column. The neutral chelates of butyltin compounds were eluted with ethyl acetate containing NaBPr4 as derivatising reagent.

View Article and Find Full Text PDF

Speciation analysis calls for rapid, simple systems for minimizing errors made in the most troublesome of all steps in the analytical process: sample preparation. In this context, continuous-flow systems are of great help. The evolution in the different methodologies enabled solutions to the main shortcomings occurring from the lack of selectivity of using RP-C18 as sorbent material.

View Article and Find Full Text PDF

A horizontal diamond attenuated total reflection (ATR) element has been incorporated in a flow-through cell with low dead volume and used for on-line mid-IR detection in high-performance liquid chromatography. The chemical inertness of the ATR element permitted the use of a strongly acidic mobile phase in the isocratic separation. The hyphenation was used for the analysis of organic acids, sugars and alcohols in red wine.

View Article and Find Full Text PDF

We report a new strategy for on-line monitoring of chemical reactions in ultrasonically levitated, nanoliter-sized droplets by Raman spectroscopy. A flow-through microdispenser connected to an automated flow injection system was used to dose picoliter droplets into the node of an ultrasonic trap. Taking advantage of the flow-through characteristics of the microdispenser and the versatility of the automated flow system, a well-defined sequence of reagents could be injected via the microdispenser into the levitated droplet placed in the focus of the collection optics of the Fourier transform Raman spectrometer.

View Article and Find Full Text PDF

A novel fullerene derivative including a chelating group attached to the fullerene core has been prepared by photoreaction of C60 and sodium diethyldithiocarbamate (NaDDC) in toluene-methanol medium. The optimization of the synthesis procedure was monitored by UV-visible spectroscopy using the spectrum of C60 fullerene as reference; the new material, a C60-NaDDC monoadduct, showed a shoulder at 430 nm and an increase in the absorption band comprised between 425 and 500 nm. The solid was obtained by photolysis reaction in approximately 24 h, requiring further purification by preparative chromatography.

View Article and Find Full Text PDF

An automatic unit for the screening of rainwater is used for the determination of organolead compounds using different detectors coupled to a gas chromatograph. A systematic overview is given of the advantages and disadvantages of several detectors (electron ionization mass spectrometry, EI-MS; microwave induced plasma atomic emission spectrometry, MIP-AES; and inductively coupled plasma time-of-flight mass spectrometry, ICP-TOFMS, for the speciation of organolead compounds on the basis of sensitivity, selectivity and reliability. C60 fullerene and RP-C18 were used as sorbent materials for these compounds.

View Article and Find Full Text PDF

A simple and novel screening method for lead compounds in environmental waters is proposed. The analytes, in an acetic medium, are sorbed on a C60 fullerene column as diethyldithiocarbamate complexes and subsequently eluted with isobutyl methyl ketone (IBMK), the lead being determined by flame atomic absorption spectrometry. The screening method acts as filter and indicates whether the target analytes are present above or below the detection limit of the method (0.

View Article and Find Full Text PDF