Detailed measurements of the spectral structure of cosmic-ray electrons and positrons from 10.6 GeV to 7.5 TeV are presented from over 7 years of observations with the CALorimetric Electron Telescope (CALET) on the International Space Station.
View Article and Find Full Text PDFWe present the observation of a charge-sign dependent solar modulation of galactic cosmic rays (GCRs) with the Calorimetric Electron Telescope onboard the International Space Station over 6 yr, corresponding to the positive polarity of the solar magnetic field. The observed variation of proton count rate is consistent with the neutron monitor count rate, validating our methods for determining the proton count rate. It is observed by the Calorimetric Electron Telescope that both GCR electron and proton count rates at the same average rigidity vary in anticorrelation with the tilt angle of the heliospheric current sheet, while the amplitude of the variation is significantly larger in the electron count rate than in the proton count rate.
View Article and Find Full Text PDFWe present the results of a direct measurement of the cosmic-ray helium spectrum with the CALET instrument in operation on the International Space Station since 2015. The observation period covered by this analysis spans from October 13, 2015, to April 30, 2022 (2392 days). The very wide dynamic range of CALET allowed for the collection of helium data over a large energy interval, from ∼40 GeV to ∼250 TeV, for the first time with a single instrument in low Earth orbit.
View Article and Find Full Text PDFA precise measurement of the cosmic-ray proton spectrum with the Calorimetric Electron Telescope (CALET) is presented in the energy interval from 50 GeV to 60 TeV, and the observation of a softening of the spectrum above 10 TeV is reported. The analysis is based on the data collected during ∼6.2 years of smooth operations aboard the International Space Station and covers a broader energy range with respect to the previous proton flux measurement by CALET, with an increase of the available statistics by a factor of ∼2.
View Article and Find Full Text PDFThe Calorimetric Electron Telescope (CALET), in operation on the International Space Station since 2015, collected a large sample of cosmic-ray iron over a wide energy interval. In this Letter a measurement of the iron spectrum is presented in the range of kinetic energy per nucleon from 10 GeV/n to 2.0 TeV/n allowing the inclusion of iron in the list of elements studied with unprecedented precision by space-borne instruments.
View Article and Find Full Text PDFIn this paper, we present the measurement of the energy spectra of carbon and oxygen in cosmic rays based on observations with the Calorimetric Electron Telescope on the International Space Station from October 2015 to October 2019. Analysis, including the detailed assessment of systematic uncertainties, and results are reported. The energy spectra are measured in kinetic energy per nucleon from 10 GeV/n to 2.
View Article and Find Full Text PDFIn this paper, we present the analysis and results of a direct measurement of the cosmic-ray proton spectrum with the CALET instrument onboard the International Space Station, including the detailed assessment of systematic uncertainties. The observation period used in this analysis is from October 13, 2015 to August 31, 2018 (1054 days). We have achieved the very wide energy range necessary to carry out measurements of the spectrum from 50 GeV to 10 TeV covering, for the first time in space, with a single instrument the whole energy interval previously investigated in most cases in separate subranges by magnetic spectrometers (BESS-TeV, PAMELA, and AMS-02) and calorimetric instruments (ATIC, CREAM, and NUCLEON).
View Article and Find Full Text PDFExtended results on the cosmic-ray electron + positron spectrum from 11 GeV to 4.8 TeV are presented based on observations with the Calorimetric Electron Telescope (CALET) on the International Space Station utilizing the data up to November 2017. The analysis uses the full detector acceptance at high energies, approximately doubling the statistics compared to the previous result.
View Article and Find Full Text PDFFirst results of a cosmic-ray electron and positron spectrum from 10 GeV to 3 TeV is presented based upon observations with the CALET instrument on the International Space Station starting in October, 2015. Nearly a half million electron and positron events are included in the analysis. CALET is an all-calorimetric instrument with total vertical thickness of 30 X_{0} and a fine imaging capability designed to achieve a large proton rejection and excellent energy resolution well into the TeV energy region.
View Article and Find Full Text PDFJ Geophys Res Space Phys
December 2013
[1] Terrestrial gamma-ray flashes (TGFs)-very short, intense bursts of electrons, positrons, and energetic photons originating from terrestrial thunderstorms-have been detected with satellite instruments. TGF and Energetic Thunderstorm Rooftop Array (TETRA), an array of NaI(Tl) scintillators at Louisiana State University, has now been used to detect similar bursts of 50 keV to over 2 MeV gamma-rays at ground level. After 2.
View Article and Find Full Text PDFGalactic cosmic rays consist of protons, electrons and ions, most of which are believed to be accelerated to relativistic speeds in supernova remnants. All components of the cosmic rays show an intensity that decreases as a power law with increasing energy (for example as E(-2.7)).
View Article and Find Full Text PDFThe Transport Collaboration, consisting of researchers from institutions in France, Germany, Italy and the USA, has established a program to make new measurements of nuclear interaction cross sections for heavy projectiles (Z > or = 2) in targets of liquid H2, He and heavier materials. Such cross sections directly affect calculations of galactic and solar cosmic ray transport through matter and are needed for accurate radiation hazard assessment. To date, the collaboration has obtained data using the LBL Bevalac HISS facility with 20 projectiles from 4He to 58Ni in the energy range 393-910 MeV/nucleon.
View Article and Find Full Text PDFWe present Linear Energy Transfer (LET) spectra calculated for the 1990-1991 CRRES mission using the galactic cosmic ray (GCR) and solar energetic particle (SEP) models developed for the CRRES/SPACERAD program and presented by Chen, et al. 1992 at this conference. We discuss how the spectra vary with changes in the galactic cosmic ray and solar energetic particle models.
View Article and Find Full Text PDFThe galactic cosmic rays (GCR) contain fully stripped nuclei, from Hydrogen to beyond the Iron group, accelerated to high energies and are a major component of the background radiation encountered by satellites and interplanetary spacecraft. This paper presents a GCR model which is based upon our current understanding of the astrophysics of GCR transport through interstellar and interplanetary space. The model can be used to predict the energy spectra for all stable and long-lived radioactive species from H to Ni over an energy range from 50 to 50,000 MeV/nucleon as a function of a single parameter, the solar modulation level phi.
View Article and Find Full Text PDFA model of solar energetic particles (SEP) has been developed and is applied to solar flares during the 1990/1991 CRRES mission using data measured by the University of Chicago instrument, ONR-604. The model includes the time-dependent behavior, heavy-ion content, energy spectrum and fluence, and can accurately represent the observed SEP events in the energy range between 40 to 500 MeV/nucleon. Results are presented for the March and June, 1991 flare periods.
View Article and Find Full Text PDF