Publications by authors named "JP Holloway"

The aim of the present investigation was to provide insight into how postconcussion symptomatology may be altered in individuals exhibiting attention-deficit/hyperactivity disorder (ADHD)-related behaviors and examine factors that may be responsible for driving such relationships. A total of 99 individuals were assessed during the subacute phase of concussion recovery. Inattentive symptomatology, but not diagnosis of ADHD, was related to greater concussion-symptom severity and overall symptoms endorsed.

View Article and Find Full Text PDF

The COVID-19 pandemic starting in the first half of 2020 has changed the lives of everyone across the world. Reduced mobility was essential due to it being the largest impact possible against the spread of the little understood SARS-CoV-2 virus. To understand the spread, a comprehension of human mobility patterns is needed.

View Article and Find Full Text PDF

Evidence suggests that factors associated with a family history of neurodegenerative disease (fhNDD) may influence outcomes following a concussion. However, the relevance of these findings in adolescent populations has not been fully explored. Therefore, the present study sought to evaluate the relationship between fhNDD and neurological outcomes following an adolescent concussion.

View Article and Find Full Text PDF

Objective assessments of concussion recovery are crucial for facilitating effective clinical management. However, predictive tools for determining adolescent concussion outcomes are currently limited. Research suggests that heart rate variability (HRV) represents an indirect and objective marker of central and peripheral nervous system integration.

View Article and Find Full Text PDF

Experiments were performed to mitigate the hard x-ray background commonly observed in backlit pinhole imagers. The material of the scaffold holding the primary backlighter foil was varied to reduce the laser-plasma instabilities responsible for hot electrons and resulting hard x-ray background. Radiographic measurements with image plates showed a factor of >25 decrease in x-rays between 30 and 67 keV when going from a plastic to Al or V scaffold.

View Article and Find Full Text PDF

Hard x-rays from laser-produced hot electrons (>10 keV) in backlit pinhole imagers can give rise to a background signal that decreases signal dynamic range in radiographs. Consequently, significant uncertainties are introduced to the measured optical depth of imaged plasmas. Past experiments have demonstrated that hard x-rays are produced when hot electrons interact with the high-Z pinhole substrate used to collimate the softer He-α x-ray source.

View Article and Find Full Text PDF

Monte Carlo methods provide a powerful technique for estimating the average radiation flux in a volume (or across a surface) in cases where analytical solutions may not be possible. Unfortunately, Monte Carlo simulations typically provide only integral results and do not offer any further details about the distribution of the flux with respect to space, angle, time or energy. In the functional expansion tally (FET) a Monte Carlo simulation is used to estimate the functional expansion coefficients for flux distributions with respect to an orthogonal set of basis functions.

View Article and Find Full Text PDF

Electrons in a standing electromagnetic wave--an optical lattice--tend to oscillate due to the quiver and ponderomotive potentials. For sufficiently intense laser fields (Ilamda2 approximately < or = 5 x 10(17) W cm(-2) microm2) and in plasmas with sufficiently low electron densities (n approximately < or = 10(18) cm(-3)), these oscillations can occur faster than the plasma can respond. This paper shows that these oscillations result in Thomson scattering of light at both the laser and ponderomotive bounce frequencies and their harmonics as well as at mixtures of these frequencies.

View Article and Find Full Text PDF

We report the formation of silicon and carbon hetero-nanostructures in an inductively coupled plasma system by a simultaneous growth/etching mechanism. Multi-walled carbon nanotubes were grown during one, three and five hour depositions, while tapered silicon nanowires were progressively etched. The carbon and silicon nanostructures and the interfaces between them were studied by electron microscopies and micro Raman spectroscopies.

View Article and Find Full Text PDF