Publications by authors named "JP Collman"

Neurodegeneration is a pathological condition in which nervous system or neuron losses its structure, function, or both leading to progressive neural degeneration. Growing evidence strongly suggests that reduction of plasmalogens (Pls), one of the key brain lipids, might be associated with multiple neurodegenerative diseases, including Alzheimer's disease (AD). Plasmalogens are abundant members of ether-phospholipids.

View Article and Find Full Text PDF

Deregulation of mitochondrial dynamics leads to the accumulation of oxidative stress and unhealthy mitochondria; consequently, this accumulation contributes to premature aging and alterations in mitochondria linked to metabolic complications. We postulate that restrained mitochondrial ATP synthesis might alleviate age-associated disorders and extend healthspan in mammals. Herein, we prepared a previously discovered mitochondrial complex IV moderate inhibitor in drinking water and orally administered to standard-diet-fed, wild-type C57BL/6J mice every day for up to 16 mo.

View Article and Find Full Text PDF

The rationale of the study was two-fold: (i) develop a functional synthetic model of the Cytochrome c oxidase (CcO) active site, (ii) use it as a convenient tool to understand or predict the outcome of the reaction of CcO with ligands (physiologically relevant gases and other ligands). At physiological pH and potential, the model catalyzes the 4-electron reduction of oxygen. This model was immobilized on self-assembled-monolayer (SAM) modified electrode.

View Article and Find Full Text PDF

Platelets are important mediators of blood coagulation that lack nuclei, but contain mitochondria. Although the presence of mitochondria in platelets has long been recognized, platelet mitochondrial function remains largely unaddressed. On the basis of a small amount of literature that suggests platelet mitochondria are functional, we hypothesized that the inhibition of platelet mitochondria disrupts platelet function and platelet-activated blood coagulation.

View Article and Find Full Text PDF

In this report, we present a novel platform to study proton-coupled electron transfer (PCET) by controlling the proton flux using an electrode-supported hybrid bilayer membrane (HBM). Oxygen reduction by an iron porphyrin was used as a model PCET reaction. The proton flux was controlled by incorporating an aliphatic proton carrier, decanoic acid, into the lipid layer of the HBM.

View Article and Find Full Text PDF
Article Synopsis
  • An electrode system was created with ferrocene molecules embedded in a hybrid bilayer membrane (HBM) for characterization.
  • The redox properties of ferrocene were analyzed by changing the lipid and alkanethiol components of the HBM, revealing that their performance relied on the electrolyte's hydrophobicity and the positioning of ferrocene within the membrane.
  • The study also assessed how effectively lipid-embedded ferrocenium ions could oxidize ascorbic acid in solution, finding this ability varied based on the counterion used.
View Article and Find Full Text PDF

This account reports recent developments of a functional model for the active site of cytochrome c oxidase (CcO). This CcO mimic not only performs the selective four-electron reduction of oxygen to water but also catalytically reduces oxygen using the biological one-electron reductant, cytochrome c. This functional model has been used to understand other biological reactions of CcO, for example, the interaction between the gaseous hormone, NO, and CcO.

View Article and Find Full Text PDF

This tutorial review discusses the immobilization of alkyne-terminated cytochrome c oxidase models on azide-functionalized self-assembled monolayers (SAM) coated gold electrodes that was made possible by click chemistry. The rate of electron delivery from the electrode to the model could be tuned by changing the nature of the SAM. Biologically relevant electron transfer rates (2-4 s(-1)) were obtained on slow SAMs allowing the model to turn over catalytically under steady-state conditions.

View Article and Find Full Text PDF

The toxic gas H(2)S is produced by enzymes in the body. At moderate concentrations, H(2)S elicits physiological effects similar to hibernation. Herein, we describe experiments that imply that the phenomenon probably results from reversible inhibition of the enzyme cytochrome c oxidase (CcO), which reduces oxygen during respiration.

View Article and Find Full Text PDF

Electrocatalytic reduction of O(2) by functional cytochrome C Oxidase (CcO) models is studied in the presence of several known inhibitors like CO, N(3)(-), CN(-), and NO(2)(-). These models successfully reproduce the inhibitions observed in CcO at similar concentrations reported for these inhibitors. Importantly, the data show very different electrochemical responses depending on the nature of the inhibitor, that is, competitive, non-competitive and mixed.

View Article and Find Full Text PDF

O(2) reactivity of a functional NOR model is investigated by using electrochemistry and spectroscopy. The electrochemical measurements using interdigitated electrodes show very high selectivity for 4e O(2) reduction with minimal production of partially reduced oxygen species (PROS) under both fast and slow electron flux. Intermediates trapped at cryogenic temperatures and characterized by using resonance Raman spectroscopy under single-turnover conditions indicate that an initial bridging peroxide intermediate undergoes homolytic O--O bond cleavage generating a trans heme/nonheme bis-ferryl intermediate.

View Article and Find Full Text PDF

Five iron porphyrins with different superstructures were immobilized on self-assembled-monolayer (SAM)-coated interdigitated-array (IDAs) gold-platinum electrodes. The selectivity of the catalysts i.e.

View Article and Find Full Text PDF

The close proximity of two individually addressable electrodes in an interdigitated array provides a unique platform for electrochemical study of multicatalytic processes. Here, we report a "plug-and-play" approach to control the underlying self-assembled monolayer and the electroactive species on each individually addressable electrode of an interdigitated array. The method presented here uses selective anodic desorption of a monolayer from one of the individually addressable electrodes and rapid formation of a different self-assembled monolayer on the freshly cleaned electrode.

View Article and Find Full Text PDF

Cytochrome c oxidase (CcO) catalyzes the four-electron reduction of oxygen to water, the one-electron reductant Cytochrome c (Cytc) being the source of electrons. Recently we reported a functional model of CcO that electrochemically catalyzes the four-electron reduction of O(2) to H(2)O (Collman et al. Science 2007, 315, 1565).

View Article and Find Full Text PDF

Three distal imidazole pickets in a cytochrome c oxidase (CcO) model form a pocket hosting a cluster of water molecules. The cluster makes the ferrous heme low spin, and consequently the O(2) binding slow. The nature of the rigid proximal imidazole tail favors a high spin/low spin cross-over.

View Article and Find Full Text PDF

A functional analog of the active site in the respiratory enzyme, cytochrome c oxidase (CcO) reproduces every feature in CcO's active site: a myoglobin-like heme (heme a3), a distal tridentate imidazole copper complex (Cu(B)), a phenol (Tyr244), and a proximal imidazole. When covalently attached to a liquid-crystalline SAM film on an Au electrode, this functional model continuously catalyzes the selective four-electron reduction of dioxygen at physiological potential and pH, under rate-limiting electron flux (as occurs in CcO).

View Article and Find Full Text PDF

A functional heme/nonheme nitric oxide reductase (NOR) model is presented. The fully reduced diiron compound reacts with two equivalents of NO leading to the formation of one equivalent of N(2)O and the bis-ferric product. NO binds to both heme Fe and nonheme Fe complexes forming individual ferrous nitrosyl species.

View Article and Find Full Text PDF

Cytochrome c oxidase (CcO) is a multimetallic enzyme that carries out the reduction of O2 to H2O and is essential to respiration, providing the energy that powers all aerobic organisms by generating heat and forming ATP. The oxygen-binding heme a(3) should be subject to fatal inhibition by chemicals that could compete with O2 binding. Near the CcO active site is another enzyme, NO synthase, which produces the gaseous hormone NO.

View Article and Find Full Text PDF

N3- binding to a functional model of CcO is investigated in its Fe3+, Fe3+Cu+, and Fe3+Cu2+ forms. A combination of EPR and FTIR indicates that N3- binds in a bridging mode in the bimetallic sites and signature N3- bands are identified for several forms of N3- binding to the site. The presence of the distal metal increases the binding affinity of N3-.

View Article and Find Full Text PDF

Porphyrins 1ab and 2ab were successfully synthesized from cis-alpha2-bisimidazole-beta-imidazole-tail porphyrins and two newly synthesized imidazole pickets containing an aliphatic ester chain following a [2+1] approach. The four compounds possess a distal trisimidazole set, a distal carboxylic acid, and a proximal imidazole, which constitute all the key features of the coordination environment of the active site in Bacterial Nitric Oxide Reductase (NOR) and make them the closest synthetic NOR model ligands to date.

View Article and Find Full Text PDF

Five alkyne-containing hemoprotein models have been synthesized in a convergent manner. Sonogashira coupling was used to introduce the alkyne functional group on the proximal imidazole before or after being attached on the porphyrin. One model was immobilized onto a gold electrode surface via copper(I)-catalyzed azide-alkyne cycloaddition (Sharpless click chemistry).

View Article and Find Full Text PDF

We studied the selectivity of a functional model of cytochrome c oxidase's active site that mimics the coordination environment and relative locations of Fe(a3), Cu(B), and Tyr(244). To control electron flux, we covalently attached this model and analogs lacking copper and phenol onto self-assembled monolayer-coated gold electrodes. When the electron transfer rate was made rate limiting, both copper and phenol were required to enhance selective reduction of oxygen to water.

View Article and Find Full Text PDF