Publications by authors named "JP Bird"

Covalent 2D magnets such as CrTe, which feature self-intercalated magnetic cations located between monolayers of transition-metal dichalcogenide material, offer a unique platform for controlling magnetic order and spin texture, enabling new potential applications for spintronic devices. Here, it is demonstrated that the unconventional anomalous Hall effect (AHE) in CrTe, characterized by additional humps and dips near the coercive field in AHE hysteresis, originates from an intrinsic mechanism dictated by the self-intercalation. This mechanism is distinctly different from previously proposed mechanisms such as topological Hall effect, or two-channel AHE arising from spatial inhomogeneities.

View Article and Find Full Text PDF

We present a theory for plasmonic crystal instability in a semiconductor field-effect transistor with a dual grating gate array, designed with strong asymmetry in the elementary cell of this "crystal". We demonstrate that, under the action of a dc current bias, the Bloch plasma waves in the plasmonic crystal formed in this transistor develop the Dyakonov-Shur instability. By calculating the energy spectrum and instability increments/decrements-which govern the growth/decay of excitations within the plasmonic crystal-we analyze the dependence of the latter on the electron drift velocity and the extent of the structural asymmetry.

View Article and Find Full Text PDF

Eradicating invasive predators from islands can result in substantial recovery of seabirds, but the mechanisms that drive population changes remain poorly understood. Meta-analyses have recently revealed that immigration is surprisingly important to the recovery of philopatric seabirds, but it is not known whether dispersal and philopatry interact predictably to determine rates of population growth and changes of distribution. We used whole-island surveys and long-term monitoring plots to study the abundance, distribution, and trends of 4 burrowing seabird species on Macquarie Island, Australia, to examine the legacy impacts of invasive species and ongoing responses to the world's largest eradication of multiple species of vertebrates.

View Article and Find Full Text PDF

The significant discrepancy observed between the predicted and experimental switching fields in correlated insulators under a DC electric field far-from-equilibrium necessitates a reevaluation of current microscopic understanding. Here we show that an electron avalanche can occur in the bulk limit of such insulators at arbitrarily small electric field by introducing a generic model of electrons coupled to an inelastic medium of phonons. The quantum avalanche arises by the generation of a ladder of in-gap states, created by a multi-phonon emission process.

View Article and Find Full Text PDF

Stacking of graphene with hexagonal boron nitride (h-BN) can dramatically modify its bands from their usual linear form, opening a series of narrow minigaps that are separated by wider minibands. While the resulting spectrum offers strong potential for use in functional (opto)electronic devices, a proper understanding of the dynamics of hot carriers in these bands is a prerequisite for such applications. In this work, we therefore apply a strategy of rapid electrical pulsing to drive carriers in graphene/h-BN heterostructures deep into the dissipative limit of strong electron-phonon coupling.

View Article and Find Full Text PDF

Owing to their practical applications, two-dimensional semiconductor p-n diodes have attracted enormous attention. Over the past decade, various methods, such as chemical doping, heterojunction structures, and metallization using metals with different work functions, have been reported for fabrication of such devices. In this study, a lateral p-n junction diode is formed in tungsten diselenide (WSe ) using a combination of edge and surface contacts.

View Article and Find Full Text PDF

Terahertz (THz) plasma oscillations represent a potential path to implement ultrafast electronic devices and circuits. Here, we present an approach to generate on-chip THz signals that relies on plasma-wave stabilization in nanoscale transistors with specific structural asymmetry. A hydrodynamic treatment shows how the transistor asymmetry supports plasma-wave amplification, giving rise to pronounced negative differential conductance (NDC).

View Article and Find Full Text PDF

Evidence of robust spin-dependent transport in monolayer graphene, deposited on the (0001) surface of the antiferromagnetic (AFM)/magneto-electric oxide chromia (Cr O ), is provided. Measurements performed in the non-local spin-Hall geometry reveal a robust signal that is present at zero external magnetic field and which is significantly larger than any possible ohmic contribution. The spin-related signal persists well beyond the Néel temperature (≈307 K) that defines the transition between the AFM and paramagnetic states, remaining visible at the highest studied temperature of close to 450 K.

View Article and Find Full Text PDF

In this study, an electrostatically induced quantum confinement structure, so-called quantum point contact, has been realized in a p-type trilayer tungsten diselenide-based van der Waals heterostructure with modified van der Waals contact method with degenerately doped transition metal dichalcogenide crystals. Clear quantized conductance and pinch-off state through the one-dimensional confinement were observed by dual-gating of split gate electrodes and top gate. Conductance plateaus were observed at a step of / in addition to quarter plateaus such as 0.

View Article and Find Full Text PDF

Mesoscopic conductance fluctuations are a ubiquitous signature of phase-coherent transport in small conductors, exhibiting universal character independent of system details. In this Letter, however, we demonstrate a pronounced breakdown of this universality, due to the interplay of local and remote phenomena in transport. Our experiments are performed in a graphene-based interaction-detection geometry, in which an artificial magnetic texture is induced in the graphene layer by covering a portion of it with a micromagnet.

View Article and Find Full Text PDF

The differential conductance of graphene is shown to exhibit a zero-bias anomaly at low temperatures, arising from a suppression of the quantum corrections due to weak localization and electron interactions. A simple rescaling of these data, free of any adjustable parameters, shows that this anomaly exhibits a universal, temperature- (T) independent form. According to this, the differential conductance is approximately constant at small voltages (V < kT/e), while at larger voltages it increases logarithmically with the applied bias.

View Article and Find Full Text PDF

Birds have been comprehensively assessed on the International Union for Conservation of Nature (IUCN) Red List more times than any other taxonomic group. However, to date, generation lengths have not been systematically estimated to scale population trends when undertaking assessments, as required by the criteria of the IUCN Red List. We compiled information from major databases of published life-history and trait data for all birds and imputed missing life-history data as a function of species traits with generalized linear mixed models.

View Article and Find Full Text PDF

Although semiconductor to metal phase transformation of MoTe by high-density laser irradiation of more than 0.3 MW cm has been reported, we reveal that the laser-induced-metal (LIM) phase is not the 1T' structure derived by a polymorphic-structural phase transition but consists instead of semi-metallic Te induced by photo-thermal decomposition of MoTe. The technique is used to fabricate a field effect transistor with a Pd/2H-MoTe/LIM structure having an asymmetric metallic contact, and its contact properties are studied via scanning gate microscopy.

View Article and Find Full Text PDF

We demonstrate an unusual manifestation of coherent scattering for electron waves in mesoscopic quantum point contacts, in which fast electron dynamics allows the phonon system to serve as a quasistatic source of disorder. The low-temperature conductance of these devices exhibits a giant (≫2e^{2}/h) zero bias anomaly (ZBA), the features of which are reproduced in a nonequilibrium model for coherent scattering from the "frozen" phonon disorder. According to this model, the ZBA is understood to result from the in situ electrical manipulation of the phonon disorder, a mechanism that could open up a pathway to the on-demand control of coherent scattering in the solid state.

View Article and Find Full Text PDF

We use transient electrical measurements to investigate the details of self-heating and charge trapping in graphene transistors encapsulated in hexagonal boron nitride (h-BN) and operated under strongly nonequilibrium conditions. Relative to more standard devices fabricated on SiO substrates, encapsulation is shown to lead to an enhanced immunity to charge trapping, the influence of which is only apparent under the combined influence of strong gate and drain electric fields. Although the precise source of the trapping remains to be determined, one possibility is that the strong gate field may lower the barriers associated with native defects in the h-BN, allowing them to mediate the capture of energetic carriers from the graphene channel.

View Article and Find Full Text PDF

We explore the electrical characteristics of TiS nanowire field-effect transistor (FETs), over the wide temperature range from 3 to 350 K. These nanomaterials have a quasi-one-dimensional (1D) crystal structure and exhibit a gate-controlled metal-insulator transition (MIT) in their transfer curves. Their room-temperature mobility is ∼20-30 cm/(V s), 2 orders of magnitude smaller than predicted previously, a result that we explain quantitatively in terms of the influence of polar-optical phonon scattering in these materials.

View Article and Find Full Text PDF

The high field phenomena of inter-valley transfer and avalanching breakdown have long been exploited in devices based on conventional semiconductors. In this Article, we demonstrate the manifestation of these effects in atomically-thin WS field-effect transistors. The negative differential conductance exhibits all of the features familiar from discussions of this phenomenon in bulk semiconductors, including hysteresis in the transistor characteristics and increased noise that is indicative of travelling high-field domains.

View Article and Find Full Text PDF

We explore the contributions to the electrical resistance of monolayer and bilayer graphene, revealing transitions between different regimes of charge carrier scattering. In monolayer graphene at low densities, a nonmonotonic variation of the resistance is observed as a function of temperature. Such behaviour is consistent with the influence of scattering from screened Coulomb impurities.

View Article and Find Full Text PDF

Utilizing an innovative combination of scanning-probe and spectroscopic techniques, supported by first-principles calculations, we demonstrate how electron-beam exposure of field-effect transistors, implemented from ultrathin molybdenum disulfide (MoS), may cause nanoscale structural modifications that in turn significantly modify the electrical operation of these devices. Quite surprisingly, these modifications are induced by even the relatively low electron doses used in conventional electron-beam lithography, which are found to induce compressive strain in the atomically thin MoS. Likely arising from sulfur-vacancy formation in the exposed regions, the strain gives rise to a local widening of the MoS bandgap, an idea that is supported both by our experiment and by the results of first-principles calculations.

View Article and Find Full Text PDF

We demonstrate a novel form of thermally-assisted hysteresis in the transfer curves of monolayer MoS FETs, characterized by the appearance of a large gate-voltage window and distinct current levels that differ by a factor of ∼10. The hysteresis emerges for temperatures in excess of 400 K and, from studies in which the gate-voltage sweep parameters are varied, appears to be related to charge injection into the SiO gate dielectric. The thermally-assisted memory is strongly suppressed in equivalent measurements performed on bilayer transistors, suggesting that weak screening in the monolayer system plays a vital role in generating its strongly sensitive response to the charge-injection process.

View Article and Find Full Text PDF

The fluctuations in the conductance of graphene that arise from a long-range disorder potential induced by random impurities are investigated with an atomic tight-binding lattice. The screened impurities lead to a slow variation of the background potential and this varies the overall potential landscape as the Fermi energy or an applied magnetic field is varied. As a result, the phase interference varies randomly and leads to fluctuations in the conductance.

View Article and Find Full Text PDF

Rapid (nanosecond-scale) electrical pulsing is used to study drift-velocity saturation in graphene field-effect devices. In these experiments, high-field pulses are utilized to drive graphene's carriers on time scales much faster than that on which energy loss to the underlying substrate can occur, thereby allowing the observation of the highest saturation velocities reported to date. In a dramatic departure from the behavior exhibited by conventional metals and semiconductors, as the electron or hole density is reduced toward the charge-neutrality point, the drift velocity is found to reach values comparable to the Fermi velocity itself.

View Article and Find Full Text PDF

This report on progress explores recent advances in our theoretical and experimental understanding of the physics of open quantum systems (OQSs). The study of such systems represents a core problem in modern physics that has evolved to assume an unprecedented interdisciplinary character. OQSs consist of some localized, microscopic, region that is coupled to an external environment by means of an appropriate interaction.

View Article and Find Full Text PDF