Complex tissue flows in epithelia are driven by intra- and inter-cellular processes that generate, maintain, and coordinate mechanical forces. There has been growing evidence that cell shape anisotropy, manifested as nematic order, plays an important role in this process. Here we extend an active nematic vertex model by replacing substrate friction with internal viscous dissipation, dominant in epithelia not supported by a substrate or the extracellular matrix, which are found in many early-stage embryos.
View Article and Find Full Text PDFWe study a mixture of extensile and contractile cells using a vertex model extended to include active nematic stresses. The two cell populations phase separate over time. While phase separation strengthens monotonically with an increasing magnitude of contractile activity, the dependence on extensile activity is nonmonotonic, so that sufficiently high values reduce the extent of sorting.
View Article and Find Full Text PDFThese notes provide an introduction to phase ordering in dry, scalar active matter. We first briefly review Model A and Model B, the long-standing continuum descriptions of ordering in systems with a non-conserved and conserved scalar order parameter. We then contrast different ways in which the field theories can be extended so that the phase ordering persists, but in systems that are active and do not reach thermodynamic equilibrium.
View Article and Find Full Text PDFWe use a continuum, two-fluid approach to study a mixture of two active nematic fluids. Even in the absence of thermodynamically driven ordering, for mixtures of different activities we observe turbulent microphase separation, where domains form and disintegrate chaotically in an active turbulent background. This is a weak effect if there is no elastic nematic alignment between the two fluid components, but is greatly enhanced in the presence of an elastic alignment or substrate friction.
View Article and Find Full Text PDFDirector field alignment in inkjet printed droplets of chiral nematic liquid crystalline materials is investigated using both experiments and numerical simulations. Experimental investigations are performed by depositing droplets of varying sizes and pitches on homeotropic alignment layers. The competition between the bulk behaviour of the chiral nematic liquid crystal and the boundary conditions imposed by the droplet surface leads to the formation of a range of possible internal director configurations.
View Article and Find Full Text PDFCell sorting, the segregation of cells with different properties into distinct domains, is a key phenomenon in biological processes such as embryogenesis. We use a phase-field model of a confluent cell layer to study the role of activity in cell sorting. We find that a mixture of cells with extensile or contractile dipolar activity, and which are identical apart from their activity, quickly sort into small, elongated patches which then grow slowly in time.
View Article and Find Full Text PDFWe use linear stability analysis and hybrid lattice Boltzmann simulations to study the dynamical behavior of an active nematic confined in a channel made of viscoelastic material. We find that the quiescent, ordered active nematic is unstable above a critical activity. The transition is to a steady flow state for high elasticity of the channel surroundings.
View Article and Find Full Text PDFPhys Rev Lett
December 2023
We study the vertex model for epithelial tissue mechanics extended to include coupling between the cell shapes and tensions in cell-cell junctions. This coupling represents an active force which drives the system out of equilibrium and leads to the formation of nematic order interspersed with prominent, long-lived +1 defects. The defects in the nematic ordering are coupled to the shape of the cell tiling, affecting cell areas and coordinations.
View Article and Find Full Text PDFThe hydrodynamic theory of active nematics has been often used to describe the spatio-temporal dynamics of cell flows and motile topological defects within soft confluent tissues. Those theories, however, often rely on the assumption that tissues consist of cells with a fixed, anisotropic shape and do not resolve dynamical cell shape changes due to flow gradients. In this paper we extend the continuum theory of active nematics to include cell shape deformability.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
July 2023
Interaction between active materials and the boundaries of geometrical confinement is key to many emergent phenomena in active systems. For living active matter consisting of animal cells or motile bacteria, the confinement boundary is often a deformable interface, and it has been unclear how activity-induced interface dynamics might lead to morphogenesis and pattern formation. Here, we studied the evolution of bacterial active matter confined by a deformable boundary.
View Article and Find Full Text PDFWe extend the continuum theories of active nematohydrodynamics to model a two-fluid mixture with separate velocity fields for each fluid component, coupled through a viscous drag. The model is used to study an active nematic fluid mixed with an isotropic fluid. We find microphase separation, and argue that this results from an interplay between active anchoring and active flows driven by concentration gradients.
View Article and Find Full Text PDFCoordinated rotational motion is an intriguing, yet still elusive mode of collective cell migration, which is relevant in pathological and morphogenetic processes. Most of the studies on this topic have been carried out on epithelial cells plated on micropatterned substrates, where cell motion is confined in regions of well-defined shapes coated with extracellular matrix adhesive proteins. The driver of collective rotation in such conditions has not been clearly elucidated, although it has been speculated that spatial confinement can play an essential role in triggering cell rotation.
View Article and Find Full Text PDFSelf-organisation is the spontaneous emergence of spatio-temporal structures and patterns from the interaction of smaller individual units. Examples are found across many scales in very different systems and scientific disciplines, from physics, materials science and robotics to biology, geophysics and astronomy. Recent research has highlighted how self-organisation can be both mediated and controlled by confinement.
View Article and Find Full Text PDFWe use a computational phase-field model together with analytical analysis to study how intercellular active forces can mediate individual cell morphology and collective motion in a confluent cell monolayer. We explore the regime where intercellular forces dominate the tissue dynamics, and polar forces are negligible. Contractile intercellular interactions lead to cell elongation, nematic ordering, and active turbulence characterized by motile topological defects.
View Article and Find Full Text PDFWe extend the continuum theory of active nematic fluids to study cell flows and tissue dynamics inside multicellular spheroids, spherical, self-assembled aggregates of cells that are widely used as model systems to study tumour dynamics. Cells near the surface of spheroids have better access to nutrients and therefore proliferate more rapidly than those in the resource-depleted core. Using both analytical arguments and three-dimensional simulations, we find that the proliferation gradients result in flows and in gradients of activity both of which can align the orientation axis of cells inside the aggregates.
View Article and Find Full Text PDFWe numerically investigate how spatial variations of extensile or contractile active stress affect bulk active nematic systems in two and three dimensions. In the absence of defects, activity gradients drive flows which re-orient the nematic director field and thus act as an effective anchoring force. At high activity, defects are created and the system transitions into active turbulence, a chaotic flow state characterized by strong vorticity.
View Article and Find Full Text PDFWe use numerical simulations and linear stability analysis to study an active nematic layer where the director is allowed to point out of the plane. Our results highlight the difference between extensile and contractile systems. Contractile stress suppresses the flows perpendicular to the layer and favors in-plane orientations of the director.
View Article and Find Full Text PDFWe perform lattice Boltzmann simulations of an active nematic fluid confined in a two-dimensional channel to study the range of flow states that are stabilised by the confinement: unidirectional flow, oscillatory flow, the dancing state, localised active turbulence and fully-developed active turbulence. We analyse the flows in Fourier space, and measure a range of different length scales which describe the flows. We argue that the different states occur as a result of flow instabilities inherent to the system.
View Article and Find Full Text PDFWe numerically solve the active nematohydrodynamic equations of motion, coupled to a Turing reaction-diffusion model, to study the effect of active nematic flow on the stripe patterns resulting from a Turing instability. If the activity is uniform across the system, the Turing patterns dissociate when the flux from active advection balances that from the reaction-diffusion process. If the activity is coupled to the concentration of Turing morphogens, and neighbouring stripes have equal and opposite activity, the system self organises into a pattern of shearing flows, with stripes tending to fracture and slip sideways to join their neighbours.
View Article and Find Full Text PDFComplex interactions between cellular systems and their surrounding extracellular matrices are emerging as important mechanical regulators of cell functions, such as proliferation, motility and cell death, and such cellular systems are often characterized by pulsating actomyosin activities. Here, using an active gel model, we numerically explore spontaneous flow generation by activity pulses in the presence of a viscoelastic medium. The results show that cross-talk between the activity-induced deformations of the viscoelastic surroundings and the time-dependent response of the active medium to these deformations can lead to the reversal of spontaneously generated active flows.
View Article and Find Full Text PDFActomyosin machinery endows cells with contractility at a single-cell level. However, within a monolayer, cells can be contractile or extensile based on the direction of pushing or pulling forces exerted by their neighbours or on the substrate. It has been shown that a monolayer of fibroblasts behaves as a contractile system while epithelial or neural progentior monolayers behave as an extensile system.
View Article and Find Full Text PDF