One of the principal signatures of superfluidity is the frictionless flow of a superfluid through another substance. Here, we study the flow of a Bose-Einstein condensate through a thermal cloud and study its damping for different harmonic confinements and temperatures. The damping rates close to the collisionless regime are found to be in good agreement with Landau damping and become smaller for more homogeneous systems.
View Article and Find Full Text PDFWe study the heat conduction of a cold, thermal cloud in a highly asymmetric trap. The cloud is axially hydrodynamic, but due to the asymmetric trap radially collisionless. By locally heating the cloud we excite a thermal dipole mode and measure its oscillation frequency and damping rate.
View Article and Find Full Text PDFWe describe the setup to create a large Bose-Einstein condensate containing more than 120 x 10(6) atoms. In the experiment a thermal beam is slowed by a Zeeman slower and captured in a dark-spot magneto-optical trap (MOT). A typical dark-spot MOT in our experiments contains 2.
View Article and Find Full Text PDFPhys Rev Lett
August 2004
We describe the realization of a magnetically guided beam of cold rubidium atoms, with a flux of 7 x 10(9) atoms/s, a temperature of 400 microK, and a mean velocity of 1 m/s. The rate of elastic collisions within the beam is sufficient to ensure thermalization. We show that the evaporation induced by a radio-frequency wave leads to appreciable cooling and an increase in the phase space density.
View Article and Find Full Text PDFWe study the collapse of large homogeneous Bose-Einstein condensates due to intrinsic attractive interactions. We observe the amplification of a local instability by seeding a momentum state p and suddenly switching the scattering length negative via a Feshbach resonance. We also observe the appearance of atoms in the conjugate momentum state as required by momentum conservation.
View Article and Find Full Text PDFWe study the nondegenerate parametric amplifier for matter waves, implemented by colliding two Bose-Einstein condensates. The coherence of the amplified waves is shown by observing high contrast interference with a reference wave and by reversing the amplification process. Since our experiments also place limits on all known sources of decoherence, we infer that relative number squeezing is most likely present between the amplified modes.
View Article and Find Full Text PDFBy colliding two Bose-Einstein condensates, we have observed strong bosonic stimulation of the elastic scattering process. When a weak input beam was applied as a seed, it was amplified by a factor of 20. This large gain atomic four-wave mixing resulted in the generation of two macroscopically occupied pair-correlated atomic beams.
View Article and Find Full Text PDFPhonons with wave vector q/(planck constant) were optically imprinted into a Bose-Einstein condensate. Their momentum distribution was analyzed using Bragg spectroscopy with a high momentum transfer. The wave function of the phonons was shown to be a superposition of +q and -q free particle momentum states, in agreement with the Bogoliubov quasiparticle picture.
View Article and Find Full Text PDFWe studied the nucleation of vortices in a Bose-Einstein condensate stirred by a laser beam. The vortex cores were observed using time-of-flight absorption imaging. Depending on the stirrer size, either discrete resonances or a broad response was visible as the stir frequency was varied.
View Article and Find Full Text PDFBose-Einstein condensates of sodium atoms have been prepared in optical and magnetic traps in which the energy-level spacing in one or two dimensions exceeds the interaction energy between atoms, realizing condensates of lower dimensionality. The crossover into two-dimensional and one-dimensional condensates was observed by a change in aspect ratio and by the release energy converging to a nonzero value when the number of trapped atoms was reduced.
View Article and Find Full Text PDFQuantized vortices play a key role in superfluidity and superconductivity. We have observed the formation of highly ordered vortex lattices in a rotating Bose-condensed gas. These triangular lattices contained over 100 vortices with lifetimes of several seconds.
View Article and Find Full Text PDFWe have studied the hydrodynamic flow in a Bose-Einstein condensate stirred by a macroscopic object, a blue-detuned laser beam, using nondestructive in situ phase contrast imaging. A critical velocity for the onset of a pressure gradient has been observed, and shown to be density dependent. The technique has been compared to a calorimetric method used previously to measure the heating induced by the motion of the laser beam.
View Article and Find Full Text PDF