Importance: Digital health in biomedical research and its expanding list of potential clinical applications are rapidly evolving. A combination of new digital health technologies (DHTs), novel uses of existing DHTs through artificial intelligence- and machine learning-based algorithms, and improved integration and analysis of data from multiple sources has enabled broader use and delivery of these tools for research and health care purposes. The aim of this study was to assess the growth and overall trajectory of DHT funding through a National Institutes of Health (NIH)-wide grant portfolio analysis.
View Article and Find Full Text PDFRelativistic exact two-component coupled-cluster calculations of molecular sensitivity factors for nuclear Schiff moments (NSMs) are reported. We focus on molecules containing heavy nuclei, especially octupole-deformed nuclei. Analytic relativistic coupled-cluster gradient techniques are used and serve as useful tools for identifying candidate molecules that sensitively probe for physics beyond the Standard Model in the hadronic sector.
View Article and Find Full Text PDFPolyatomic molecules have rich structural features that make them uniquely suited to applications in quantum information science, quantum simulation, ultracold chemistry and searches for physics beyond the standard model. However, a key challenge is fully controlling both the internal quantum state and the motional degrees of freedom of the molecules. Here we demonstrate the creation of an optical tweezer array of individual polyatomic molecules, CaOH, with quantum control of their internal quantum state.
View Article and Find Full Text PDFUltracold polar molecules are promising candidate qubits for quantum computing and quantum simulations. Their long-lived molecular rotational states form robust qubits, and the long-range dipolar interaction between molecules provides quantum entanglement. In this work, we demonstrate dipolar spin-exchange interactions between single calcium monofluoride (CaF) molecules trapped in an optical tweezer array.
View Article and Find Full Text PDFUltracold polyatomic molecules are promising candidates for experiments in quantum science and precision searches for physics beyond the Standard Model. A key requirement is the ability to achieve full quantum control over the internal structure of the molecules. In this work, we established coherent control of individual quantum states in calcium monohydroxide (CaOH) and demonstrated a method for searching for the electron electric dipole moment (eEDM).
View Article and Find Full Text PDFChannel dimensions (width and depth) at varying flows influence a host of instream ecological processes, as well as habitat and biotic features; they are a major consideration in stream habitat restoration and instream flow assessments. Models of widths and depths are often used to assess climate change vulnerability, develop endangered species recovery plans, and model water quality. However, development and application of such models require specific skillsets and resources.
View Article and Find Full Text PDFWe report optical trapping of a polyatomic molecule, calcium monohydroxide (CaOH). CaOH molecules from a magneto-optical trap are sub-Doppler laser cooled to 20(3) μK in free space and loaded into an optical dipole trap. We attain an in-trap molecule number density of 3(1)×10^{9} cm^{-3} at a temperature of 57(8) μK.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
May 2023
The US Environmental Protection Agency (EPA) uses a water quality index (WQI) to estimate benefits of proposed Clean Water Act regulations. The WQI is relevant to human use value, such as recreation, but may not fully capture aspects of nonuse value, such as existence value. Here, we identify an index of biological integrity to supplement the WQI in a forthcoming national stated preference survey that seeks to capture existence value of streams and lakes more accurately within the conterminous United States (CONUS).
View Article and Find Full Text PDFThe ability of research networks and individual institutions to effectively and efficiently prepare, respond, and adapt to emergent challenges is essential for the biomedical research enterprise. At the beginning of 2021, a special Working Group was formed by individuals in the Clinical and Translational Science Award (CTSA) consortium and approved by the CTSA Steering Committee to explore "Adaptive Capacity and Preparedness (AC&P) of CTSA Hubs." The AC&P Working Group took a pragmatic Environmental Scan (E-Scan) approach of utilizing the diverse data that had been collected through existing mechanisms.
View Article and Find Full Text PDFThe application of silicon photomultiplier (SiPM) technology for weak-light detection at a single photon level has expanded thanks to its better photon detection efficiency in comparison to a conventional photomultiplier tube (PMT). SiPMs with large detection area have recently become commercially available, enabling applications where the photon flux is low both temporarily and spatially. On the other hand, several drawbacks exist in the usage of SiPMs such as a higher dark count rate, many readout channels, slow response time, and optical crosstalk; therefore, users need to carefully consider the trade-offs.
View Article and Find Full Text PDFLittle has been published on the demographic composition of the clinical and translational science research workforce within the Clinical and Translational Science Awards (CTSA) Program despite the well-documented need for greater diversity in the biomedical research workforce. Analyses of workforce demographic reveal that women and members of underrepresented groups remain persistently underrepresented in the CTSA hub and training components principal investigators. In contrast, in the CTSA Program career development and training programs, females have greater representation as participants, and non-Whites were better represented in training programs.
View Article and Find Full Text PDFThe coronavirus disease 2019 (COVID-19) pandemic has dramatically changed our lives and the delivery of healthcare. The pandemic also led to widespread disruption in the research activities and training of pre-doctoral, post-doctoral, and early career faculty researchers. This mini-review uses the Local Adaptive Capacity Framework to describe successful practices, challenges, and lessons learned on how Clinical and Translational Science Award (CTSA) hubs have used their expertise, resources, and collaborations to advance clinical and translational science research and workforce development while facing and adapting to a pandemic.
View Article and Find Full Text PDFBackground: Allegheny woodrats (Neotoma magister) are found in metapopulations distributed throughout the Interior Highlands and Appalachia. Historically these metapopulations persisted as relatively fluid networks, enabling gene flow between subpopulations and recolonization of formerly extirpated regions. However, over the past 45 years, the abundance of Allegheny woodrats has declined throughout the species' range due to a combination of habitat destruction, declining hard mast availability, and roundworm parasitism.
View Article and Find Full Text PDFJ Phys Chem Lett
November 2022
We present a high-resolution laser spectroscopic study of the ÃB-X̃A and B̃B-X̃A transitions of calcium(I) phenoxide, CaOPh (CaOCH). The rotationally resolved band systems are analyzed using an effective Hamiltonian model and are accurately modeled as independent perpendicular (- or -type) transitions. The structure of calcium monophenoxide is compared to previously observed Ca-containing radicals, and implications for direct laser cooling are discussed.
View Article and Find Full Text PDFIntroduction: Pilot projects ("pilots") are important for testing hypotheses in advance of investing more funds for full research studies. For some programs, such as Clinical and Translational Science Awards (CTSAs) supported by the National Center for Translational Sciences, pilots also make up a significant proportion of the research projects conducted with direct CTSA support. Unfortunately, administrative data on pilots are not typically captured in accessible databases.
View Article and Find Full Text PDFRapid and repeated photon cycling has enabled precision metrology and the development of quantum information systems using atoms and simple molecules. Extending optical cycling to structurally complex molecules would provide new capabilities in these areas, as well as in ultracold chemistry. Increased molecular complexity, however, makes realizing closed optical transitions more difficult.
View Article and Find Full Text PDFMolecular design principles provide guidelines for augmenting a molecule with a smaller group of atoms to realize a desired property or function. We demonstrate that these concepts can be used to create an optical cycling centre, the Ca(I)-O unit, that can be attached to a number of aromatic ligands, enabling the scattering of many photons from the resulting molecules without changing the molecular vibrational state. Such capability plays a central role in quantum state preparation and measurement, as well as laser cooling and trapping, and is therefore a prerequisite for many quantum science and technology applications.
View Article and Find Full Text PDFLaser cooling and trapping, and magneto-optical trapping methods in particular, have enabled groundbreaking advances in science, including Bose-Einstein condensation, quantum computation with neutral atoms and high-precision optical clocks. Recently, magneto-optical traps (MOTs) of diatomic molecules have been demonstrated, providing access to research in quantum simulation and searches for physics beyond the standard model. Compared with diatomic molecules, polyatomic molecules have distinct rotational and vibrational degrees of freedom that promise a variety of transformational possibilities.
View Article and Find Full Text PDFA wide variety of human diseases have been modelled in zebrafish, including various types of cancer, cardiovascular diseases and neurodegenerative diseases like Alzheimer's and Parkinson's. Recent reviews have summarized the currently available zebrafish models of Parkinson's Disease, which include gene-based, chemically induced and chemogenetic ablation models. The present review updates the literature, critically evaluates each of the available models of Parkinson's Disease in zebrafish and compares them with similar models in invertebrates and mammals to determine their advantages and disadvantages.
View Article and Find Full Text PDFIntroduction: Performing cataract surgery in the setting of only one seeing-eye has significant benefits but also potential negative consequences for both patient and surgeon. This study investigates the surgical outcomes in patients undergoing cataract surgery on their only seeing-eye.
Methods: A retrospective analysis was conducted in a single tertiary centre of all adult patients who had undergone cataract surgery on their only eye, where the fellow eye had a vision of 1.
We present a robust, continuous molecular decelerator that employs high magnetic fields and few optical pumping steps. CaOH molecules are slowed, accumulating at low velocities in a range sufficient for loading both magnetic and magneto-optical traps. During the slowing, the molecules scatter only seven photons, removing around 8 K of energy.
View Article and Find Full Text PDFBackground: Early career researchers face a hypercompetitive funding environment. To help identify effective intervention strategies for early career researchers, we examined whether first-time NIH R01 applicants who resubmitted their original, unfunded R01 application were more successful at obtaining any R01 funding within 3 and 5 years than original, unfunded applicants who submitted new NIH applications, and we examined whether underrepresented minority (URM) applicants differentially benefited from resubmission. Our observational study is consistent with an NIH working group's recommendations to develop interventions to encourage resubmission.
View Article and Find Full Text PDFUnderrepresented minorities have higher attrition from the professoriate and have experienced greater negative impacts of the COVID-19 pandemic. The purpose of this study was to compare the impact of COVID-19 on the lives of 196 early-career physician-scientists versus PhD researchers who are underrepresented in biomedical research. Participants in the Building Up study answered questions on the impact of the COVID-19 pandemic on their personal and professional lives, and a mixed-methods approach was used to conduct the analysis.
View Article and Find Full Text PDFQubit coherence times are critical to the performance of any robust quantum computing platform. For quantum information processing using arrays of polar molecules, a key performance parameter is the molecular rotational coherence time. We report a 93(7) ms coherence time for rotational state qubits of laser cooled CaF molecules in optical tweezer traps, over an order of magnitude longer than previous systems.
View Article and Find Full Text PDF