Interpretation of radar sounder reflections to infer the structure and composition of the martian polar caps depends on whether bright returns correspond to single packed dust layers or a more finely layered structure. Reflections from multiple layers can create strong resonant scattering (interference) effects that impact analyses of radargram reflectors and inference of dielectric contrast. We identify resonant behavior for an areally extensive reflector in the north polar layered deposits from Shallow Radar data processed in two frequency bands.
View Article and Find Full Text PDFJ Chem Phys
September 2022
Methods for correcting residual energy errors of configuration interaction (CI) calculations of molecules and other electronic systems are discussed based on the assumption that the energy defect can be mapped onto atomic regions. The methods do not consider the detailed nature of excitations but instead define a defect energy per electron that is unique to a specific atom. Defect energy contributions are determined from calculations on diatomic and hydride molecules and then applied to other systems.
View Article and Find Full Text PDFPer- and polyfluoroalkyl substances (PFAS) are used extensively in commercial products. Their unusual solubility properties make them an ideal class of compounds for various applications. However, these same properties have led to significant contamination and bioaccumulation given their persistence in the environment.
View Article and Find Full Text PDFTwo methods for estimating the correlation energy of molecules and other electronic systems are discussed based on the assumption that the correlation energy can be partitioned between atomic regions. In the first method, the electron density is expanded in terms of atomic contributions using rigorous electron repulsion bounds, and in the second method, correlation contributions are associated with basis function pairs. These methods do not consider the detailed nature of localized excitations but instead define a correlation energy per electron factor that is unique to a specific atom.
View Article and Find Full Text PDFPhys Chem Chem Phys
October 2019
A one-electron Schrödinger equation based on special one-electron potentials for atoms is shown to exist that produces orbitals for an arbitrary molecule that are sufficiently accurate to be used without modification to construct single- and multi-determinant wavefunctions. The exact Hamiltonian is used to calculate the energy variationally and to generate configuration interaction expansions. Earlier work on equilibrium geometries is extended to larger basis sets and molecular dissociation.
View Article and Find Full Text PDFMagnetic ions M in discrete molecules and extended solids form ML complexes with their first-coordinate ligand atoms L. The spin moment of M in a complex ML prefers a certain direction in coordinate space because of spin-orbit coupling (SOC). In this minireview, we examine the structural and electronic factors governing the preferred spin orientations.
View Article and Find Full Text PDFFor a given many-electron molecule, it is possible to define a corresponding one-electron Schrödinger equation, using potentials derived from simple atomic densities, whose solution predicts fairly accurate molecular orbitals for single-determinant and multideterminant wavefunctions for the molecule. The energy is not predicted and must be evaluated by calculating Coulomb and exchange interactions over the predicted orbitals. Transferable potentials for first-row atoms and transition metal oxides that can be used without modification in different molecules are reported.
View Article and Find Full Text PDFRadar-bright deposits on Venus that have diffuse margins suggest eruptions that distribute debris over large areas due to ground-hugging flows from plume collapse. We examine deposits in Eastern Eistla, Western Eistla, Phoebe, and Dione Regiones using Magellan data and Earth-based radar maps. The radar-bright units have no marginal lobes or other features consistent with viscous flow.
View Article and Find Full Text PDFFor a given many-electron molecule, it is possible to define a corresponding one-electron Schrödinger equation, using potentials derived from simple atomic densities, whose solution predicts fairly accurate molecular orbitals for single- and multi-determinant wavefunctions for the molecule. The energy is not predicted and must be evaluated by calculating Coulomb and exchange interactions over the predicted orbitals. Potentials are found by minimizing the energy of predicted wavefunctions.
View Article and Find Full Text PDFCoulomb interactions that occur in electronic structure calculations are correlated by allowing basis function components of the interacting densities to polarize dynamically, thereby reducing the magnitude of the interaction. Exchange integrals of molecular orbitals are not correlated. The modified Coulomb interactions are used in single-determinant or configuration interaction calculations.
View Article and Find Full Text PDFThe low-lying excited electronic states of a (Ti(6)O(12))(3) nanotube are investigated using ab initio self-consistent field configuration interaction theory. The transition energies and moments are calculated and the nature of the orbitals involved is discussed. Transitions correspond to an excitation from an O(2p) to a nearby Ti(3d) orbital and singlet-singlet transitions vary in excitation energy from 2.
View Article and Find Full Text PDFThe photochemistry of a solvated hydronium ion near a silver surface is investigated using ab initio self-consistent field and configuration interaction theory. Photoinduced electron attachment can occur at energies in the range of 1.1-1.
View Article and Find Full Text PDFMESSENGER observations from Mercury orbit reveal that a large contiguous expanse of smooth plains covers much of Mercury's high northern latitudes and occupies more than 6% of the planet's surface area. These plains are smooth, embay other landforms, are distinct in color, show several flow features, and partially or completely bury impact craters, the sizes of which indicate plains thicknesses of more than 1 kilometer and multiple phases of emplacement. These characteristics, as well as associated features, interpreted to have formed by thermal erosion, indicate emplacement in a flood-basalt style, consistent with x-ray spectrometric data indicating surface compositions intermediate between those of basalts and komatiites.
View Article and Find Full Text PDFTheoretical studies of the ground and lowest excited singlet and triplet states of a series of titanium dioxide ring structures, (TiO(2))(2n), n = 3-9, are reported. Calculations are based on many-electron configuration theory, where energies of states and geometrical structures are determined by variational energy minimization. The lowest energy excited states correspond to excitations from oxygen 2p levels to unoccupied 3d orbitals on titanium.
View Article and Find Full Text PDFTrue n-type doping of titanium oxide without formation of midgap states would expand the use of metal oxides for charge-based devices. We demonstrate that plasma-assisted fluorine insertion passivates defect states and that fluorine acts as an n-type donor in titanium oxide. This enabled us to modify the Fermi level and transport properties of titanium oxide outside the limits of O vacancy doping.
View Article and Find Full Text PDFPC-IDMS experiments for two peptides, laminin nonapeptide and the N-terminal tryptic peptide of prostate specific antigen, were performed utilizing a variety of alkylating reagents. These experiments were conducted to investigate how hydrophobicity influences the limits-of-detection (LOD) by altering their electrospray ionization response. Nonpolar surface areas were calculated for both peptides and all alkylating reagents to provide an estimate of the hydrophobicity of the differently alkylated peptides.
View Article and Find Full Text PDFTheoretical electronic structure calculations are reported for the dissociation of water adsorbed on a 31-atom silver cluster, Ag31, and subsequent transfer of a H to a second Ag31 cluster leaving OH on the first cluster. Both ground and excited electronic state processes are considered for two choices of Ag cluster separation, 6.35 and 7.
View Article and Find Full Text PDFAb initio calculations at the Hartree-Fock self-consistent field/single determinant (SCF) and configuration interaction multi-determinant (CI) expansion levels have been used to show that isobutane primary C-H bond activation occurs via direct protium exchange with the zeolite surface via a weakly hydrogen-bonded complex. The calculated 15 kcal/mol activation barrier agrees with the 13.7 kcal/mol value from a recently reported experimental study (J.
View Article and Find Full Text PDFConfiguration interaction calculations of the ground and excited states of the H2CO molecule adsorbed on the Ag(111) surface have been carried out to study the photoinduced dissociation process leading to polymerization of formaldehyde. The metal-adsorbate system has been described by the embedded cluster and multireference configuration interaction methods. The pi electron-attachment H2CO- and n-pi* internally excited H2CO* states have been considered as possible intermediates.
View Article and Find Full Text PDFThe adsorption of H(2)O and its dissociation products, O, H, and OH, on Ag(100) has been studied using an ab initio embedding method. Results at different sites (atop, bridge, and hollow) are presented. The four-fold hollow site is found to be the most stable adsorption site for O, H, and OH, and the calculated adsorption energies are 87.
View Article and Find Full Text PDFTheoretical studies of CO adsorption on a two-layer Ag(100) film and on a two-layer Ag film on a MgO(100) support are reported. Ab initio calculations are carried at the configuration interaction level of theory using embedding methods to treat the metal-adsorbate region and the extended ionic solid. The metal overlayer is considered in two different structures: where Ag-Ag distances are equal to the value in the bulk solid, and for a slightly expanded lattice in which the Ag-Ag distances are equal to the O-O distance on the MgO(100) surface.
View Article and Find Full Text PDFLocalized molecular orbitals (LMOs) derived from exchange maximization with respect to all atom-centered basis functions in the basis set are shown to generate a good starting electronic field for self-consistent field calculations on extended systems such as metal clusters, for which well-defined chemical bonds are not present. Examples studied are a cluster of 20 Ni atoms and the Pt(97)CO, Ag(43)/H(3)CNON, Ag(91)/H(2)CO, and vinylidene/Ni metal cluster plus adsorbate systems. It is also shown that improved starting vectors can be obtained by remixing a subset of the LMOs with the largest exchange eigenvalues through diagonalization of the Fock matrix computed with a null electronic field.
View Article and Find Full Text PDFPhys Rev B Condens Matter
August 1994