Publications by authors named "JL Sauvajol"

Large-scale, high-quality growth of transition metal dichalcogenides (TMD) of controlled thickness is paramount for many applications in opto- and microelectronics. This paper describes the direct growth of well-controlled large area molybdenum disulfide (MoS) on Si/SiO substrates by direct liquid injection pulsed-pressure metal-organic chemical vapor deposition (DLI-PP-MOCVD) using low-toxicity precursors. It is shown that control of the deposited thickness can be achieved by carefully tuning the amount of molybdenum precursor evaporated and that continuous layers are routinely obtained.

View Article and Find Full Text PDF

Raman spectroscopy is a widely used technique to characterize nanomaterials because of its convenience, non-destructiveness, and sensitivity to materials change. The primary purpose of this work is to determine via Raman spectroscopy the average thickness of MoS thin films synthesized by direct liquid injection pulsed-pressure chemical vapor deposition (DLI-PP-CVD). Such samples are constituted of nanoflakes (with a lateral size of typically 50 nm, i.

View Article and Find Full Text PDF

The search for new relatively easy physicochemical methods for the structural identification of carbon nanotubes represents a key challenge. Here, analyzing the experimental data on double-walled carbon nanotubes (DWCNTs) obtained by us and taken from the literature, we have expressed the magnitude of elastic coupling between two tubular walls forming a DWCNT as a simple function dependent not only on DWCNT diameters but also on the difference between the chirality angles of the constituent nanotubes. To get this quite unexpected result, which allows us to relate more precisely the structural parameters of a DWCNT with frequencies of its radial breathing-like modes (RBLM), we have developed a new model for the RBLM dynamics that takes into account a possible deposition of water molecules from ambient air onto the DWCNT surface.

View Article and Find Full Text PDF

The optical properties of single-wall carbon nanotubes are very promising for developing novel opto-electronic components and sensors with applications in many fields. Despite numerous studies performed using photoluminescence or Raman and Rayleigh scattering, knowledge of their optical response is still partial. Here we determine using spatial modulation spectroscopy, over a broad optical spectral range, the spectrum and amplitude of the absorption cross-section of individual semiconducting single-wall carbon nanotubes.

View Article and Find Full Text PDF

The ultimate surface exposure provided by graphene monolayer makes it the ideal sensor platform but also exposes its intrinsic properties to any environmental perturbations. In this work, we demonstrate that the charge carrier density of graphene exfoliated on a SiO2/Si substrate can be finely and reversibly tuned between hole and electron doping with visible photons. This photo-induced doping happens under moderate laser power conditions but is significantly affected by the substrate cleaning method.

View Article and Find Full Text PDF

The self-assembly of a bis-urea phenylene-bridged silsesquioxane precursor during sol-gel synthesis has been investigated by in situ infrared spectroscopy, optical microscopy, and light scattering. In particular, the evolution of the system as a function of processing time was correlated with covalent interactions associated with increasing polycondensation and noncovalent interactions such as hydrogen bonding. A comprehensive mechanism based on the hydrolysis of the phenylene-bridged organosilane precursor prior to the crystallization of the corresponding bridged silsesquioxane via H-bonding and subsequent irreversible polycondensation is proposed.

View Article and Find Full Text PDF

We report in situ Raman scattering experiments on single-layer graphene (SLG) and Bernal bilayer graphene (BLG) during exposure to rubidium vapor. The G- and 2D-band evolutions with doping time are presented and analyzed. On SLG, the extended doping range scanned (up to about 10(14) electrons/cm(2)) allows the observation of three regimes in the evolution of the G-band frequency: a continuous upshift followed by a plateau and a downshift.

View Article and Find Full Text PDF

In this work, the infrared active modes are computed for homogeneous bundles of single-walled boron nitride nanotubes (BBNNTs), using the so-called spectral moments method. The dependence of the wavenumber on these modes in terms of diameters, lengths, and numbers of tubes, is investigated. To this end, use is made of a Lennard-Jones potential for describing the van der Waals interactions between tubes in a bundle.

View Article and Find Full Text PDF

The crystalline structure of ureidopyrimidinone-based silane (UPY) has been determined. The local and long range order structuring of the bridged silsesquioxane (MUPY) resulting from the sol-gel hydrolysis-condensation of the former precursor has been investigated by MFTIR (Mid Fourier Transform InfraRed) combined with DFT (Density Functional Theory) and XRD (X-ray diffraction) studies. These studies showed that a long range structuring exists within the organic fragments with the transcription of the DDAA (Donor-Donor-Acceptor-Acceptor) H-bonding array from UPY to MUPY whereas a disordered siloxane network was revealed in the hybrid material.

View Article and Find Full Text PDF

We perform transmission electron microscopy, electron diffraction, and Raman scattering experiments on an individual suspended double-walled carbon nanotube (DWCNT). The first two techniques allow the unambiguous determination of the DWCNT structure: (12,8)@(16,14). However, the low-frequency features in the Raman spectra cannot be connected to the derived layer diameters d by means of the 1/d power law, widely used for the diameter dependence of the radial-breathing mode of single-walled nanotubes.

View Article and Find Full Text PDF

A new set of C-C interball force constant was developed in order to reproduce the low wavenumber density of states measured by neutron scattering and the Raman spectra of the C(60) dimer and C(60) polymer chain. The nonresonant Raman spectra of the C(60) dimer and C(60) polymer confined inside a (10, 10) single-walled carbon nanotube were calculated in the framework of the bond-polarization theory by using the spectral moments method. The main changes of the Raman spectrum as a function of the organization of the C(60) molecules inside the nanotubes were identified.

View Article and Find Full Text PDF

The hydrolysis and condensation of a silylated derivative of ureidopyrimidinone led to nanostructured hybrid silica, such as that depicted, as clearly shown by powder XRD studies. The nanostructuring was directly related to molecular recognition through hydrogen bonding. By combining FTIR, solution and solid-state NMR spectroscopic data, the transcription of the hydrogen-bonding networks from the precursor to the final product was clearly evidenced.

View Article and Find Full Text PDF

New promising oligo(phenylenethienylene)s have been synthesized to realize suitable materials for improving electronic transport properties, particularly in organic field effect transistors (OFETs). Far-infrared and incoherent neutron scattering measurements have been performed to assign their phonon modes. The assignment of the main low-frequency phonon modes of these materials has been performed experimentally by using a filiation procedure.

View Article and Find Full Text PDF

A long-range ordered organic/inorganic material is synthesized from a bis-silane, (EtO)(3)Si-(CH(2))(3)-NHCONH-C(6)H(4)-NHCONH-(CH(2))(3)-Si(OEt)(3). This crosslinked sol-gel solid exhibits a supramolecular organization via intermolecular hydrogen bonding interactions between urea groups (-NHCONH-) and covalent siloxane bonding, triple bond Si-O-Si triple bond. Time-resolved in situ X-ray measurements (coupling small- and wide-angle X-ray scattering techniques) are performed to follow the different steps involved in the synthetic process.

View Article and Find Full Text PDF

In the present work, the non-resonant Raman-active modes are calculated for several diameters, chiralities and sizes for homogeneous and inhomogeneous bundles of single-walled carbon nanotubes (BWCNTs), using the spectral moment's method (SMM). Additional intense Raman-active modes are present in the breathing-like modes (BLM) spectra of these systems in comparison with a single fully symmetric A(1g) mode characteristic of isolated nanotubes (SWCNTs). The dependence of the wavenumber of these modes in terms of diameters, lengths and number of tubes was investigated.

View Article and Find Full Text PDF

We have investigated the experimental X-ray and far-infrared responses of three polythiophenes synthesized from a thiophene, alpha-bithiophene, and alpha-quaterthiophene monomer. The X-ray data show that the crystallinity of the different polythiophene samples depends on the synthesis conditions. An excellent correlation between the crystallinity of polythiophenes and their far-infrared signatures is demonstrated.

View Article and Find Full Text PDF

The dynamics of confined systems is of major concern for both fundamental physics and applications. In this Letter, the dynamics of C60 fullerene molecules inside single walled carbon nanotubes is studied using inelastic neutron scattering. We identify the C60 vibrations and highlight their sensitivity to temperature.

View Article and Find Full Text PDF

Adsorption of specifically designed and geometrically constrained polyaromatic amphiphiles on single-walled carbon nanotubes (SWNTs) was found to be selective of the nanotube helicity angle. Starting from the same SWNT mixture, photoluminescence and resonant Raman spectroscopies show that a pentacenic-based amphiphile leads to the solubilization of armchair SWNTs and that a quaterrylene-based amphiphile leads to the solubilization of zigzag SWNTs. The results were predicted by the design of the two amphiphiles and are consistent with a supramolecular recognition of the nanotube graphene-type atomic structure by the aromatic part of the molecules through optimized pi-pi-stacking interactions.

View Article and Find Full Text PDF

The resonant Raman spectra of (n, m) semiconducting single-walled carbon nanotubes, unambiguously identified from their electron diffraction patterns, have been measured. The diameter dependence of the frequency of the tangential modes with A symmetry has been obtained in the diameter range from 1.4 to 2.

View Article and Find Full Text PDF

Fourier transform infrared (FTIR) spectroscopy has been used to probe the organization of the organic fragments in lamellar bridged silsesquioxanes with organic substructures based on alkylene chains of various lengths and urea groups [O1.5Si(CH2)3NHCONH(CH2)nNHCONH(CH2)3SiO1.5] (n = 6, 8-12).

View Article and Find Full Text PDF

Phonons in the alpha-quaterthiophene (4T) and alpha-sexithiophene (6T) polymorph phases are investigated using the direct method combined with density functional theory (DFT)-based total energy calculations. The simulation of inelastic neutron scattering spectra (INS) on the LT and HT polymorph phases of 4T and 6T enable the corresponding spectral signatures of these materials to be identified. In particular, there are two fingerprints: (i) the low-frequency vibrational modes (frequencies lower than 200 cm(-1)) and (ii) the vibrational modes in the 600-900 cm(-1) frequency range.

View Article and Find Full Text PDF

Infrared intramolecular vibrations and lattice modes in the crystalline phase of 2,2'-bithiophene (2T) are investigated using the direct method combined with density functional theory (DFT)-based total energy calculations. For the first time, the far- and mid-infrared responses have been calculated from the Gamma-point modes and the Born effective charge tensors of the 2T crystalline phase. The relative good agreement between the calculated and experimental infrared spectra allows us to assign the origin of the main features of the experimental spectra, which is of particular interest in the far-infrared domain.

View Article and Find Full Text PDF

By using the spectral moments method, we calculate the infrared spectra of chiral and achiral single-walled carbon nanotubes (SWCNTs) of different diameters and lengths. We show that the number of the infrared modes, their frequencies, and intensities depend on the length and chirality of the nanotubes. Furthermore, the dependence of the infrared spectrum as a function of the size of the SWCNT bundle is analyzed.

View Article and Find Full Text PDF

The radial breathing modes and tangential modes have been systematically measured on a large number of individual semiconducting single-wall carbon nanotubes (thin bundles) suspended between plots (free-standing single-wall carbon nanotubes). The strong intensity of the Raman spectra ensures the precision of the experimentally determined line shapes and frequencies of these modes. The diameter dependence of the frequencies of the tangential modes was measured.

View Article and Find Full Text PDF

Using electron diffraction on freestanding single-walled carbon nanotubes, we have determined the structural indices (n,m) of tubes in the diameter range from 1.4 to 3 nm. On the same freestanding tubes, we have recorded Raman spectra of the tangential modes and the radial breathing mode.

View Article and Find Full Text PDF