Publications by authors named "JL Hardebeck"

The Mendocino triple junction-the intersection of the Pacific, North American, and Gorda plates-activates a collection of disparate faults that reconcile Cascadia subduction with San Andreas transform motion. The 20 December 2022 6.4 Ferndale, California, earthquake occurred within this complex zone as strike-slip faulting within the subducting Gorda slab.

View Article and Find Full Text PDF

Faults often form through reactivation of pre-existing structures, developing geometries and mechanical properties specific to the system's geologic inheritance. Competition between fault geometry and other factors (e.g.

View Article and Find Full Text PDF

It is thought that extensional structures (extensional cracks and normal faults) generated during the post-seismic period create fluid pathways that enhance the drainage of the subducting plate interface, thus reducing the pore pressure and increasing fault strength. However, it remains to be elucidated how much pore fluid pressure decreases by the extension crack formation. Here we examined (i) the pore fluid pressure decrease, and (ii) the degree fault strength recovery by the extension crack formation during the post-seismic period by analyzing extension quartz veins exposed around the Nobeoka Thrust, southwestern Japan.

View Article and Find Full Text PDF

Subduction zone megathrust faults produce most of the world's largest earthquakes. Although the physical properties of these faults are difficult to observe directly, their frictional strength can be estimated indirectly by constraining the orientations of the stresses that act on them. A global investigation of stress orientations in subduction zones finds that the maximum compressive stress axis plunges systematically trenchward, consistently making an angle of 45° to 60° with respect to the subduction megathrust fault.

View Article and Find Full Text PDF

Obtaining high-quality measurements close to a large earthquake is not easy: one has to be in the right place at the right time with the right instruments. Such a convergence happened, for the first time, when the 28 September 2004 Parkfield, California, earthquake occurred on the San Andreas fault in the middle of a dense network of instruments designed to record it. The resulting data reveal aspects of the earthquake process never before seen.

View Article and Find Full Text PDF

The stress orientation signature of weak faults containing high-pressure fluids has been observed for segments of the San Andreas fault system in southern California. The inferred lithostatic fluid pressures extend into the surrounding relatively intact rock in a zone scaling with the width of the interseismic strain accumulation. Repeated strain-related fracturing and crack sealing may have created low-permeability barriers that seal fluids into the network of currently active fractures.

View Article and Find Full Text PDF