Background: Head and neck squamous cell carcinoma (HNSCC) is a lethal disease with poor survival rates, especially for cancers arising in the oral cavity or larynx. Cisplatin is a key chemotherapeutic for HNSCC; however poor survival rates may be partially due to cisplatin resistance observed in some HNSCCs. Here, we examined the utility of genome-wide CRISPR knockout profiling for nominating pivotal mechanisms of cisplatin resistance in HNSCC models.
View Article and Find Full Text PDFBackground: Head and neck squamous cell carcinoma (HNSCC) is a debilitating disease with poor survival rates. While the epidermal growth factor receptor (EGFR)-targeting antibody Cetuximab is approved for treatment, responses are limited and the molecular mechanisms driving resistance remain incompletely understood.
Methods: To better understand how cells survive without EGFR activity, we developed an EGFR knockout derivative of the UM-SCC-92 cell line using CRISPR/Cas9 technology.
The recent advancement in single-cell RNA sequencing technologies enables the understanding of dynamic cellular processes at the single-cell level. Using trajectory inference methods, pseudotimes can be estimated based on reconstructed single-cell trajectories which can be further used to gain biological knowledge. Existing methods for modeling cell trajectories, such as minimal spanning tree or k-nearest neighbor graph, often lead to locally optimal solutions.
View Article and Find Full Text PDFMany real data analyses involve two-sample comparisons in location or in distribution. Most existing methods focus on problems where observations are independently and identically distributed in each group. However, in some applications the observed data are not identically distributed but associated with some unobserved parameters which are identically distributed.
View Article and Find Full Text PDFAs immunotherapies targeting the PDL1 checkpoint have become a mainstay of treatment for a subset of head and neck squamous cell carcinoma (HNSCC) patients, a detailed understanding of the mechanisms underlying PDL1-mediated immune evasion is needed. To elucidate factors regulating expression of PDL1 in HNSCC cells, a genome-wide CRISPR profiling approach was implemented to identify genes and pathways conferring altered PDL1 expression in an HNSCC cell line model. Our screen nominated several candidate PDL1 drivers, including Toll-like Receptor 2 (TLR2).
View Article and Find Full Text PDFBackground: Sinonasal Undifferentiated Carcinoma (SNUC) is a rare and aggressive skull base tumor with poor survival and limited treatment options. To date, targeted sequencing studies have identified IDH2 and SMARCB1 as potential driver alterations, but the molecular alterations found in SMARCB1 wild type tumors are unknown.
Methods: We evaluated survival outcomes in a cohort of 46 SNUC patients treated at an NCI designated cancer center and identify clinical and disease variables associated with survival on Kaplan-Meier and Cox multivariate survival analysis.
J Neurol Surg B Skull Base
February 2022
Targeted inhibitors of the PI3 kinase (PI3K) pathway have shown promising but incomplete antitumor activity in preclinical chordoma models. The aim of this study is to advance methodology for a high-throughput drug screen using chordoma models to identify new combination therapies for chordoma. Present work is an in vitro study.
View Article and Find Full Text PDFDespite advancements in targeting the immune checkpoints program cell death protein 1 (PD-1), programmed death ligand 1 (PD-L1), and cytotoxic T lymphocyte-associated protein 4 (CTLA-4) for cancer immunotherapy, a large number of patients and cancer types remain unresponsive. Current immunotherapies focus on modulating an antitumor immune response by directly or indirectly expanding antitumor CD8 T cells. A complementary strategy might involve inhibition of Tregs that otherwise suppress antitumor immune responses.
View Article and Find Full Text PDFTransl Lung Cancer Res
October 2019
Background: Our previous studies have identified a serum-based 4-microRNA (4-miRNA) signature that may help distinguish patients with lung cancer (LC) from non-cancer controls (NCs). Here, we used an extended independent cohort of 398 subjects to further validate the diagnostic ability of this 4-miRNA signature.
Methods: Using quantitative reverse transcription polymerase chain reaction (qRT-PCR), expression of the 4-miRNAs was assessed in a total of 398 sera that included 213 LC patients and 185 NCs.
Head and neck squamous cell carcinoma (HNSCC) is a common and debilitating form of cancer characterized by poor patient outcomes and low survival rates. In HNSCC, genetic aberrations in phosphatidylinositol 3-kinase (PI3K) and epidermal growth factor receptor (EGFR) pathway genes are common, and small molecules targeting these pathways have shown modest effects as monotherapies in patients. Whereas emerging preclinical data support the combined use of PI3K and EGFR inhibitors in HNSCC, in-human studies have displayed limited clinical success so far.
View Article and Find Full Text PDFBackground: Preterm birth is a significant public health concern and exposure to phthalates has been shown to be associated with an increased odds of preterm birth. Even modest reductions in gestational age at delivery could entail morbid consequences for the neonate and analyzing data with this additional information may be useful. In the present analysis, we consider gestational age at delivery as our outcome of interest and examine associations with multiple phthalates.
View Article and Find Full Text PDFThe diagnosis of invasive pulmonary aspergillosis (IPA) increasingly relies on non-culture-based biomarkers in bronchoalveolar lavage (BAL) fluid. The Aspergillus lateral flow device (LFD) is a rapid immunoassay that uses a novel Aspergillus monoclonal antibody to gain specificity. The objective of the study is to compare specificity and sensitivity of the prototype LFD and the galactomannan (GM) enzyme immunoassay in BAL fluid in high-risk patients.
View Article and Find Full Text PDF