We report on dual, light-responsive and redox-active foldamers that demonstrate reversible and robust stimuli-induced behaviour. Herein, UV/Vis, H NMR and circular dichroism (CD) spectroscopy and cyclic voltammetry have been used to establish the reversibility and highly robust nature of the light- and redox-driven behaviour of these new foldamers with minimal levels of fatigue observed even upon multiple cyclic treatments with irradiative/non-irradiative and oxidative/reductive conditions. This proof-of-concept work paves the way towards the creation of novel stimuli-responsive foldamers of increasing sophistication capable of demonstrating reversible and robust responses to multiple distinct stimuli.
View Article and Find Full Text PDFThe phosphoantigen ()-4-hydroxy-3-methyl-but-2-enyl pyrophosphate (HMBPP) is an established activator of Vγ9/Vδ2 T cells and stimulates downstream effector functions including cytotoxicity and cytokine production. In order to improve its drug-like properties, we herein report the design, synthesis, serum stability, metabolism, and biological evaluation of a new class of symmetrical phosphonodiamidate prodrugs of methylene and difluoromethylene monophosphonate derivatives of HMBPP. These prodrugs, termed phosphonodiamidate ProPAgens, were synthesized in good yields, exhibited excellent serum stability (>7 h), and their metabolism was shown to be initiated by carboxypeptidase Y.
View Article and Find Full Text PDFRecent studies in colorectal cancer patients (CRC) have shown that increased resistance to thymidylate synthase (TS) inhibitors such as 5-fluorouracil (5-FU), reduce the efficacy of standard of care (SoC) treatment regimens. The nucleotide pool cleanser dUTPase is highly expressed in CRC and is an attractive target for potentiating anticancer activity of chemotherapy. The purpose of the current work was to investigate the activity of P, P-di(2',5'-dideoxy-5'-selenouridinyl)-tetraphosphate (P-SedU), a selenium-modified symmetrically capped dinucleoside with prodrug capabilities that is specifically activated by dUTPase.
View Article and Find Full Text PDFChemical modification of aptamers is an important step to improve their performance and stability in biological media. This can be performed either during their identification (mod-SELEX) or after the in vitro selection process (post-SELEX). In order to reduce the complexity and workload of the post-SELEX modification of aptamers, we have evaluated the possibility of improving a previously reported, chemically modified aptamer by combining enzymatic synthesis and nucleotides bearing bioisosteres of the parent cubane side-chains or substituted cubane moieties.
View Article and Find Full Text PDFA new class of cobalt catalytic system for asymmetric hydrogenation of ketones was herein reported, involving the development of novel ferrocene-based secondary phosphine oxide ligands. An unusual P-O bidentate coordination pattern with cobalt was confirmed by an X-ray diffraction study. The bichelating tetrahedral cobalt(II) complexes afforded high reactivities (up to 99% yield) and good to excellent enantioselectivities (up to 92% ee) in the AH of various -substituted diaryl ketones.
View Article and Find Full Text PDFVirus recognition has been driven to the forefront of molecular recognition research due to the COVID-19 pandemic. Development of highly sensitive recognition elements, both natural and synthetic is critical to facing such a global issue. However, as viruses mutate, it is possible for their recognition to wane through changes in the target substrate, which can lead to detection avoidance and increased false negatives.
View Article and Find Full Text PDFA plug-and-play sandwich assay platform for the aptamer-based detection of molecular targets using linear dichroism (LD) spectroscopy as a read-out method has been demonstrated. A 21-mer DNA strand comprising the plug-and-play linker was bioconjugated onto the backbone of the filamentous bacteriophage M13, which gives a strong LD signal due to its ready alignment in linear flow. Extended DNA strands containing aptamer sequences that bind the protein thrombin, TBA and HD22, were then bound to the plug-and-play linker strand via complementary base pairing to generate aptamer-functionalised M13 bacteriophages.
View Article and Find Full Text PDFMethods for the real-time monitoring of the substrate acceptance of modified nucleotides by DNA polymerases are in high demand. In a step towards this aim, we have incorporated ferrocene-based abasic nucleotides into DNA templates and evaluated their compatibility with enzymatic synthesis of unmodified and modified DNA. All canonical nucleotides can be incorporated opposite ferrocene sites with a strong preference for purines.
View Article and Find Full Text PDFPancreatic ductal adenocarcinoma (PDAC) is a disease that remains refractory to existing treatments including the nucleoside analogue gemcitabine. In the current study we demonstrate that an organometallic nucleoside analogue, the ferronucleoside 1-(S,Rp), is cytotoxic in a panel of PDAC cell lines including gemcitabine-resistant MIAPaCa2, with IC50 values comparable to cisplatin. Biochemical studies show that the mechanism of action is inhibition of DNA replication, S-phase cell cycle arrest and stalling of DNA-replication forks, which were directly observed at single molecule resolution by DNA-fibre fluorography.
View Article and Find Full Text PDFControllable higher-order assembly is a central aim of macromolecular chemistry. An essential challenge to developing these molecules is improving our understanding of the structures they adopt under different conditions. Here, we demonstrate how flow linear dichroism (LD) spectroscopy is used to provide insights into the solution structure of a chiral, self-assembled fibrillar foldamer.
View Article and Find Full Text PDFDeoxyribonucleic acid (DNA) has been hypothesized to act as a molecular wire due to the presence of an extended π-stack between base pairs, but the factors that are detrimental in the mechanism of charge transport (CT) across tunnel junctions with DNA are still unclear. Here we systematically investigate CT across dense DNA monolayers in large-area biomolecular tunnel junctions to determine when intrachain or interchain CT dominates and under which conditions the mechanism of CT becomes thermally activated. In our junctions, double-stranded DNA (dsDNA) is 30-fold more conductive than single-stranded DNA (ssDNA).
View Article and Find Full Text PDFNucleic acid detection is an important part of our bio-detection arsenal, with the COVID-19 pandemic clearly demonstrating the importance to healthcare of rapid and efficient detection of specific pathogenic sequences. As part of the drive to establish new DNA detection methodologies and signal read-outs, here we show how linear dichroism (LD) spectroscopy can be used to produce a rapid and modular detection system for detecting quantities of DNA from both bacterial and viral pathogens. The LD sensing method exploits changes in fluid alignment of bionanoparticles (bacteriophage M13) engineered with DNA stands covalently attached to their surfaces, with the read-out signal induced by the formation of complementary duplexes between DNA targets and two M13 bionanoparticles.
View Article and Find Full Text PDFA rapid isothermal method for detecting severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus responsible for COVID-19, is reported. The procedure uses an unprecedented reverse transcription-free (RTF) approach for converting genomic RNA into DNA. This involves the formation of an RNA/DNA heteroduplex whose selective cleavage generates a short DNA trigger strand, which is then rapidly amplified using the exponential amplification reaction (EXPAR).
View Article and Find Full Text PDFThe dynamic nature of micellar nanostructures is employed to form a self-assembled Förster resonance energy transfer (FRET) nanoplatform for enhanced sensing of DNA. The platform consists of lipid oligonucleotide FRET probes incorporated into micellar scaffolds, where single recognition events result in fusion and fission of DNA mixed micelles, triggering the fluorescence response of multiple rather than a single FRET pair. In comparison to conventional FRET substrates where a single donor interacts with a single acceptor, the micellar multiplex FRET system showed ∼20- and ∼3-fold enhancements in the limit of detection and FRET efficiency, respectively.
View Article and Find Full Text PDFThe synthesis and characterisation of novel metal-modified DNA precursors for fuel cell catalyst development are described. Material precursors in the form of metal-DNA complexes were prepared through the reaction of DNA with cisplatin at various loadings and spectroscopically tested to confirm the platinum binding mode and the degree of complexation. The surface morphology of the DNA-metal material was analysed by Scanning Transmission Electron Microscopy (STEM), which revealed the extent of platinum nanocluster formation, with low metal loadings leading to observation of individual platinum atoms.
View Article and Find Full Text PDFFour new bis-substituted ferrocene derivatives containing either a hydroxyalkyl or methoxyalkyl group and either a thyminyl or methylthyminyl group have been synthesised and characterised by a range of spectroscopic and analytical techniques. They were included in a structure-activity-relationship (SAR) study probing anticancer activities in osteosarcoma (bone cancer) cell lines and were compared with a known lead compound, 1-(S,R ), a nucleoside analogue that is highly toxic to cancer cells. Biological studies using the MTT assay revealed that a regioisomer of ferronucleoside 1-(S,R ), which only differs from the lead compound in being substituted on two cyclopentadienyl rings rather than one, was over 20 times less cytotoxic.
View Article and Find Full Text PDFOligodeoxynucleotides incorporating internucleotide phosphoroselenolate linkages have been prepared under solid-phase synthesis conditions using dimer phosphoramidites. These dimers were constructed following the high yielding Michaelis-Arbuzov (M-A) reaction of nucleoside -phosphonate derivatives with 5'-deoxythymidine-5'-selenocyanate and subsequent phosphitylation. Efficient coupling of the dimer phosphoramidites to solid-supported substrates was observed under both manual and automated conditions and required only minor modifications to the standard DNA synthesis cycle.
View Article and Find Full Text PDFA new chiral organometallic nucleoside analogue containing ruthenocene is reported, in which alkylthymine and alkylhydroxyl groups are attached in adjacent positions on one cyclopentadienyl ring. The synthetic procedures for this metallocene derivative and two control compounds are described, along with their characterisation by cyclic voltammetry and X-ray crystallography. Their biological activities in a human pancreatic cancer cell line (MIA-Pa-Ca-2) were significantly lower than those of three previously reported analogous ferrocene compounds, indicating that the choice of metallocene metal atom (Fe or Ru) plays a pivotal role in determining the anticancer properties of these nucleoside analogues, which in turn suggests a different mode of action from that of a conventional nucleoside analogue.
View Article and Find Full Text PDFCorrection for 'The challenges of glycan recognition with natural and artificial receptors' by Stefano Tommasone et al., Chem. Soc.
View Article and Find Full Text PDFThe synthesis of a novel modified nucleoside phosphoramidite, Acrylamide-dT-CE phosphoramidite, obtained in three steps from commercially available starting materials, is reported. It was readily incorporated into thrombin binding aptamer (TBA) sequences using automated solid-phase synthesis under ultra-mild conditions, with the modification shown not to adversely affect duplex stability, G-quadruplex structure, or thrombin binding. The reaction and integration of the modified strands with acrylamide polymers was evidenced by gel electrophoresis.
View Article and Find Full Text PDFThe reversible photocontrol of an enzyme governing blood coagulation is demonstrated. The thrombin binding aptamer (TBA), was rendered photochromic by modification with two anthracene groups. Light-triggered anthracene photodimerisation distorts its structure, inhibiting binding of the enzyme thrombin, which in turn triggers catalysis and the resulting clotting process.
View Article and Find Full Text PDFGliomas are highly malignant brain tumours characterised by extensive areas of poor perfusion which subsequently leads to hypoxia and reduced survival. Therapies that address the hypoxic microenvironment are likely to significantly improve patient outcomes. Verteporfin, a benzoporphyrin-like drug, has been suggested to target the Yes-associated protein (YAP).
View Article and Find Full Text PDFThe labelling of DNA oligonucleotides with signalling groups that give a unique response to duplex formation depending on the target sequence is a highly effective strategy in the design of DNA-based hybridisation sensors. A key challenge in the design of these so-called base discriminating probes (BDPs) is to understand how the local environment of the signalling group affects the sensing response. The work herein describes a comprehensive study involving a variety of photophysical techniques, NMR studies and molecular dynamics simulations, on anthracene-tagged oligonucleotide probes that can sense single base changes (point variants) in target DNA strands.
View Article and Find Full Text PDF