One regime of experimental particle-laden flow study involves ejecta microjets-often defined as a stream of micrometer-scale particles generated through shock interaction with a non-uniform surface and generally travel above 1 km/s. In order to capture the change in characteristics as a function of propagation time, we apply a multi-frame x-ray radiography platform to observe and track the jet transport dynamics. A synchrotron x-ray source allows us to perform quantitative analyses and comparisons between the eight images captured by the imaging system.
View Article and Find Full Text PDFThe time-resolved x-ray diffraction platform at the National Ignition Facility (NIF) fields electronic sensors closer to the exploding laser-driven target than any other NIF diagnostic in order to directly detect diffracted x rays from highly compressed materials. We document strategies to characterize and mitigate the unacceptably high background signals observed in this geometry. We specifically assess the possible effects of electromagnetic pulse, x-ray fluorescence, hot electrons, and sensor-specific non-x-ray artifacts.
View Article and Find Full Text PDFThe Flexible Imaging Diffraction Diagnostic for Laser Experiments (FIDDLE) is a new diagnostic at the National Ignition Facility (NIF) designed to observe in situ solid-solid phase changes at high pressures using time resolved x-ray diffraction. FIDDLE currently incorporates five Icarus ultrafast x-ray imager sensors that take 2 ns snapshots and can be tuned to collect X-rays for tens of ns. The platform utilizes the laser power at NIF for both the laser drive and the generation of 10 keV X-rays for ∼10 ns using a Ge backlighter foil.
View Article and Find Full Text PDFAs part of a program to measure phase transition timescales in materials under dynamic compression, we have designed new x-ray imaging diagnostics to record multiple x-ray diffraction measurements during a single laser-driven experiment. Our design places several ns-gated hybrid CMOS (hCMOS) sensors within a few cm of a laser-driven target. The sensors must be protected from an extremely harsh environment, including debris, electromagnetic pulses, and unconverted laser light.
View Article and Find Full Text PDFThe response of materials under dynamic compression involves a complex interplay of various deformation mechanisms aimed at relieving shear stresses, yielding a remarkable diversity in material behavior. In this Letter, we utilize femtosecond x-ray diffraction coupled with nanosecond laser compression to reveal an intricate competition between multiple shear-relieving mechanisms within an elemental metal. Our observations in shocked-compressed single-crystal Zr indicate a disorder-mediated shear relaxation at lower pressures.
View Article and Find Full Text PDFWe describe a method for laser-driven planar compression of crystalline hydrogen that starts with a sample of solid para-hydrogen (even-valued rotational quantum number j) having an entropy of 0.06 kB/molecule at 10 K and 2 atm, with Boltzmann constant kB. Starting with this low-entropy state, the sample is compressed using a small initial shock (<0.
View Article and Find Full Text PDFMagnesium oxide (MgO) is a major component of the Earth's mantle and is expected to play a similar role in the mantles of large rocky exoplanets. At extreme pressures, MgO transitions from the NaCl 1 crystal structure to a CsCl 2 structure, which may have implications for exoplanetary deep mantle dynamics. In this study, we constrain the phase diagram of MgO with laser-compression along the shock Hugoniot, with simultaneous measurements of crystal structure, density, pressure, and temperature.
View Article and Find Full Text PDFPhys Rev Lett
February 2024
Diamond possesses exceptional physical properties due to its remarkably strong carbon-carbon bonding, leading to significant resilience to structural transformations at very high pressures and temperatures. Despite several experimental attempts, synthesis and recovery of the theoretically predicted post-diamond BC8 phase remains elusive. Through quantum-accurate multimillion atom molecular dynamics (MD) simulations, we have uncovered the extreme metastability of diamond at very high pressures, significantly exceeding its range of thermodynamic stability.
View Article and Find Full Text PDFWe present the development of an experimental platform that can collect four frames of x-ray diffraction data along a single line of sight during laser-driven, dynamic-compression experiments at the National Ignition Facility. The platform is comprised of a diagnostic imager built around ultrafast sensors with a 2-ns integration time, a custom target assembly that serves also to shield the imager, and a 10-ns duration, quasi-monochromatic x-ray source produced by laser-generated plasma. We demonstrate the performance with diffraction data for Pb ramp compressed to 150 GPa and illuminated by a Ge x-ray source that produces ∼7 × 1011, 10.
View Article and Find Full Text PDFThis report details the analyses and related uncertainties in measuring longitudinal-stress-density paths in indirect laser-driven ramp equation-of-state (EOS) experiments [Smith et al., Nat. Astron.
View Article and Find Full Text PDFLarge laser facilities have recently enabled material characterization at the pressures of Earth and Super-Earth cores. However, the temperature of the compressed materials has been largely unknown, or solely relied on models and simulations, due to lack of diagnostics under these challenging conditions. Here, we report on temperature, density, pressure, and local structure of copper determined from extended x-ray absorption fine structure and velocimetry up to 1 Terapascal.
View Article and Find Full Text PDFThe structures, strain fields, and defect distributions in solid materials underlie the mechanical and physical properties across numerous applications. Many modern microstructural microscopy tools characterize crystal grains, domains and defects required to map lattice distortions or deformation, but are limited to studies of the (near) surface. Generally speaking, such tools cannot probe the structural dynamics in a way that is representative of bulk behavior.
View Article and Find Full Text PDFThe dynamics of lattice vibrations govern many material processes, such as acoustic wave propagation, displacive phase transitions, and ballistic thermal transport. The maximum velocity of these processes and their effects is determined by the speed of sound, which therefore defines the temporal resolution (picoseconds) needed to resolve these phenomena on their characteristic length scales (nanometers). Here, we present an X-ray microscope capable of imaging acoustic waves with subpicosecond resolution within mm-sized crystals.
View Article and Find Full Text PDFAn experimental platform for dynamic diamond anvil cell (dDAC) research has been developed at the High Energy Density (HED) Instrument at the European X-ray Free Electron Laser (European XFEL). Advantage was taken of the high repetition rate of the European XFEL (up to 4.5 MHz) to collect pulse-resolved MHz X-ray diffraction data from samples as they are dynamically compressed at intermediate strain rates (≤10 s), where up to 352 diffraction images can be collected from a single pulse train.
View Article and Find Full Text PDFSilicon (Si) exhibits a rich collection of phase transitions under ambient-temperature isothermal and shock compression. This report describes in situ diffraction measurements of ramp-compressed Si between 40 and 389 GPa. Angle-dispersive x-ray scattering reveals that Si assumes an hexagonal close-packed (hcp) structure between 40 and 93 GPa and, at higher pressure, a face-centered cubic structure that persists to at least 389 GPa, the highest pressure for which the crystal structure of Si has been investigated.
View Article and Find Full Text PDFThis study investigates methods to optimize quasi-monochromatic, ∼10 ns long x-ray sources (XRS) for time-resolved x-ray diffraction measurements of phase transitions during dynamic laser compression measurements at the National Ignition Facility (NIF). To support this, we produce continuous and pulsed XRS by irradiating a Ge foil with NIF lasers to achieve an intensity of 2 × 10 W/cm, optimizing the laser-to-x-ray conversion efficiency. Our x-ray source is dominated by Ge He-α line emission.
View Article and Find Full Text PDFAlumina (AlO) is an important ceramic material notable for its compressive strength and hardness. It represents one of the major oxide components of the Earth's mantle. Static compression experiments have reported evidence for phase transformations from the trigonal-corundum phase to the orthorhombic RhO(II)-type structure at ∼90 GPa, and then to the post-perovskite structure at ∼130 GPa, but these phases have yet to be directly observed under shock compression.
View Article and Find Full Text PDFTriple bonding in the nitrogen molecule (N_{2}) is among the strongest chemical bonds with a dissociation enthalpy of 9.8 eV/molecule. Nitrogen is therefore an excellent test bed for theoretical and numerical methods aimed at understanding how bonding evolves under the influence of the extreme pressures and temperatures of the warm dense matter regime.
View Article and Find Full Text PDFA new approach for performing quantitative structure-factor analysis and density measurements of liquids using X-ray diffraction with a pink-spectrum X-ray source is described. The methodology corrects for the pink beam effect by performing a Taylor series expansion of the diffraction signal. The mean density, background scale factor, peak X-ray energy about which the expansion is performed, and the cutoff radius for density measurement are estimated using the derivative-free optimization scheme.
View Article and Find Full Text PDFThe properties of all materials at one atmosphere of pressure are controlled by the configurations of their valence electrons. At extreme pressures, neighboring atoms approach so close that core-electron orbitals overlap, and theory predicts the emergence of unusual quantum behavior. We ramp-compress monovalent elemental sodium, a prototypical metal at ambient conditions, to nearly 500 GPa (5 million atmospheres).
View Article and Find Full Text PDFThere has been considerable recent interest in the high-pressure behavior of silicon carbide, a potential major constituent of carbon-rich exoplanets. In this work, the atomic-level structure of SiC was determined through in situ X-ray diffraction under laser-driven ramp compression up to 1.5 TPa; stresses more than seven times greater than previous static and shock data.
View Article and Find Full Text PDF