We describe the first implementation of a Josephson Traveling Wave Parametric Amplifier (JTWPA) in an axion dark matter search. The operation of the JTWPA for a period of about two weeks achieved sensitivity to axion-like particle dark matter with axion-photon couplings above 10-13 Ge V-1 over a narrow range of axion masses centered around 19.84 µeV by tuning the resonant frequency of the cavity over the frequency range of 4796.
View Article and Find Full Text PDFDetailed measurements of the spectral structure of cosmic-ray electrons and positrons from 10.6 GeV to 7.5 TeV are presented from over 7 years of observations with the CALorimetric Electron Telescope (CALET) on the International Space Station.
View Article and Find Full Text PDFWe report the first result of a direct search for a cosmic axion background (CaB)-a relativistic background of axions that is not dark matter-performed with the axion haloscope, the Axion Dark Matter eXperiment (ADMX). Conventional haloscope analyses search for a signal with a narrow bandwidth, as predicted for dark matter, whereas the CaB will be broad. We introduce a novel analysis strategy, which searches for a CaB induced daily modulation in the power measured by the haloscope.
View Article and Find Full Text PDFThe LUX-ZEPLIN experiment is a dark matter detector centered on a dual-phase xenon time projection chamber operating at the Sanford Underground Research Facility in Lead, South Dakota, USA. This Letter reports results from LUX-ZEPLIN's first search for weakly interacting massive particles (WIMPs) with an exposure of 60 live days using a fiducial mass of 5.5 t.
View Article and Find Full Text PDFWe present the observation of a charge-sign dependent solar modulation of galactic cosmic rays (GCRs) with the Calorimetric Electron Telescope onboard the International Space Station over 6 yr, corresponding to the positive polarity of the solar magnetic field. The observed variation of proton count rate is consistent with the neutron monitor count rate, validating our methods for determining the proton count rate. It is observed by the Calorimetric Electron Telescope that both GCR electron and proton count rates at the same average rigidity vary in anticorrelation with the tilt angle of the heliospheric current sheet, while the amplitude of the variation is significantly larger in the electron count rate than in the proton count rate.
View Article and Find Full Text PDFWe present the results of a direct measurement of the cosmic-ray helium spectrum with the CALET instrument in operation on the International Space Station since 2015. The observation period covered by this analysis spans from October 13, 2015, to April 30, 2022 (2392 days). The very wide dynamic range of CALET allowed for the collection of helium data over a large energy interval, from ∼40 GeV to ∼250 TeV, for the first time with a single instrument in low Earth orbit.
View Article and Find Full Text PDFA precise measurement of the cosmic-ray proton spectrum with the Calorimetric Electron Telescope (CALET) is presented in the energy interval from 50 GeV to 60 TeV, and the observation of a softening of the spectrum above 10 TeV is reported. The analysis is based on the data collected during ∼6.2 years of smooth operations aboard the International Space Station and covers a broader energy range with respect to the previous proton flux measurement by CALET, with an increase of the available statistics by a factor of ∼2.
View Article and Find Full Text PDFWe report the results from a haloscope search for axion dark matter in the 3.3-4.2 μeV mass range.
View Article and Find Full Text PDFAxion dark matter experiment ultra-low noise haloscope technology has enabled the successful completion of two science runs (1A and 1B) that looked for dark matter axions in the 2.66-3.1 μeV mass range with Dine-Fischler-Srednicki-Zhitnisky sensitivity [Du et al.
View Article and Find Full Text PDFThe Calorimetric Electron Telescope (CALET), in operation on the International Space Station since 2015, collected a large sample of cosmic-ray iron over a wide energy interval. In this Letter a measurement of the iron spectrum is presented in the range of kinetic energy per nucleon from 10 GeV/n to 2.0 TeV/n allowing the inclusion of iron in the list of elements studied with unprecedented precision by space-borne instruments.
View Article and Find Full Text PDFIn this paper, we present the measurement of the energy spectra of carbon and oxygen in cosmic rays based on observations with the Calorimetric Electron Telescope on the International Space Station from October 2015 to October 2019. Analysis, including the detailed assessment of systematic uncertainties, and results are reported. The energy spectra are measured in kinetic energy per nucleon from 10 GeV/n to 2.
View Article and Find Full Text PDFThis Letter reports on a cavity haloscope search for dark matter axions in the Galactic halo in the mass range 2.81-3.31 μeV.
View Article and Find Full Text PDFIn this paper, we present the analysis and results of a direct measurement of the cosmic-ray proton spectrum with the CALET instrument onboard the International Space Station, including the detailed assessment of systematic uncertainties. The observation period used in this analysis is from October 13, 2015 to August 31, 2018 (1054 days). We have achieved the very wide energy range necessary to carry out measurements of the spectrum from 50 GeV to 10 TeV covering, for the first time in space, with a single instrument the whole energy interval previously investigated in most cases in separate subranges by magnetic spectrometers (BESS-TeV, PAMELA, and AMS-02) and calorimetric instruments (ATIC, CREAM, and NUCLEON).
View Article and Find Full Text PDFExtended results on the cosmic-ray electron + positron spectrum from 11 GeV to 4.8 TeV are presented based on observations with the Calorimetric Electron Telescope (CALET) on the International Space Station utilizing the data up to November 2017. The analysis uses the full detector acceptance at high energies, approximately doubling the statistics compared to the previous result.
View Article and Find Full Text PDFFirst results of a cosmic-ray electron and positron spectrum from 10 GeV to 3 TeV is presented based upon observations with the CALET instrument on the International Space Station starting in October, 2015. Nearly a half million electron and positron events are included in the analysis. CALET is an all-calorimetric instrument with total vertical thickness of 30 X_{0} and a fine imaging capability designed to achieve a large proton rejection and excellent energy resolution well into the TeV energy region.
View Article and Find Full Text PDFWe report on the results of a search for γ-ray pair halos with a stacking analysis of low redshift blazars using data from the Fermi Large Area Telescope. For this analysis we used a number of a priori selection criteria, including the spatial and spectral properties of the Fermi sources. The angular distribution of ~1 GeV photons around 24 stacked isolated high-synchrotron-peaked BL Lacs with redshift z<0.
View Article and Find Full Text PDFWe report the detection of pulsed gamma rays from the Crab pulsar at energies above 100 giga-electron volts (GeV) with the Very Energetic Radiation Imaging Telescope Array System (VERITAS) array of atmospheric Cherenkov telescopes. The detection cannot be explained on the basis of current pulsar models. The photon spectrum of pulsed emission between 100 mega-electron volts and 400 GeV is described by a broken power law that is statistically preferred over a power law with an exponential cutoff.
View Article and Find Full Text PDFThe accretion of matter onto a massive black hole is believed to feed the relativistic plasma jets found in many active galactic nuclei (AGN). Although some AGN accelerate particles to energies exceeding 10(12) electron volts and are bright sources of very-high-energy (VHE) gamma-ray emission, it is not yet known where the VHE emission originates. Here we report on radio and VHE observations of the radio galaxy Messier 87, revealing a period of extremely strong VHE gamma-ray flares accompanied by a strong increase of the radio flux from its nucleus.
View Article and Find Full Text PDFMrk 421 was observed for about 2 days with BeppoSAX in 1998 April as part of a worldwide multiwavelength campaign. A large, well-defined flare was observed in X-rays. The same flare was observed simultaneously at TeV energies by the Whipple Observatory gamma-ray telescope.
View Article and Find Full Text PDFMagnetic resonance imaging (MRI) was used to compare the appearance of the spine in 20 adolescents with proven symptomatic intervertebral disc herniations with that in 20 asymptomatic patients who acted as controls. Abnormality in the signal from the nucleus pulposus of one or more discs was present in all patients, while only four of the 20 controls had any abnormal signals. In all the patients the symptomatic disc produced an abnormal signal and in most a herniated fragment of the nucleus pulposus was identified.
View Article and Find Full Text PDFA variety of extra-axial lesions occurring at the cerebello-pontine angle was examined by magnetic resonance imaging (MRI). Differences in spin sequence characteristics were found between neurilemmomas and meningiomas, with neurilemmomas exhibiting a greater increase in T2 than meningiomas. The T1 images were of less value in differentiating between neurilemmomas and meningiomas but were of value in the diagnosis of vascular lesions, due to the decreased T1 of blood clot.
View Article and Find Full Text PDF