Publications by authors named "JF Stoddart"

A rapid and efficient synthesis of the extended bipyridinium-based class of cyclophanes--that is, Ex(n)Box(4+) (n = 0-3), where n is the number of p-phenylene rings inserted between the pyridinium rings--is demonstrated, resulting in much higher yields of products along with a reduced output of oligomeric byproducts. Although each cyclophane can be synthesized readily without the use of a precise stoichiometric amount of template, ExBox(4+) can be prepared in 66% yield (following crystallization) using six equivalents of pyrene in a template-directed protocol. This new methodology has been employed to synthesize, in modest yield, a nearly 2.

View Article and Find Full Text PDF

After the manner in which coenzymes often participate in the binding of substrates in the active sites of enzymes, pillar[5]arene, a macrocycle containing five hydroquinone rings linked through their para positions by methylene bridges, modifies the binding properties of cucurbit[6]uril, such that the latter templates azide-alkyne cycloadditions that do not occur in the presence of only the cucurbit[6]uril, a macrocycle composed of six glycoluril residues doubly linked through their nitrogen atoms to each other by methylene groups. Here, we describe how a combination of pillar[5]arene and cucurbit[6]uril interacts cooperatively with bipyridinium dications substituted on their nitrogen atoms with 2-azidoethyl- to 5-azidopentyl moieties to afford, as a result of orthogonal templation, two [4]rotaxanes and one [5]rotaxane in >90% yields inside 2 h at 55 °C in acetonitrile. Since the hydroxyl groups on pillar[5]arene and the carbonyl groups on cucurbit[6]uril form hydrogen bonds readily, these two macrocycles work together in a cooperative fashion to the extent that the four conformational isomers of pillar[5]arene can be trapped on the dumbbell components of the [4]rotaxanes.

View Article and Find Full Text PDF

The aromatizing ring-closing metathesis has been shown to take place inside an extended porous framework. Employing a combination of solvent-assisted linker exchange and postsynthesis modification using olefin metathesis, the noninterpenetrated SALEM-14 was formed and converted catalytically into PAH-MOF-1 with polycyclic aromatic hydrocarbon (PAH) pillars. The metal-organic framework in SALEM-14 prevents "intermolecular" olefin metathesis from occurring between the pillars in the presence of the first generation Hoveyda-Grubbs catalyst, while favoring the production of a PAH, which can be released from the framework under acidic conditions in dimethylsulfoxide.

View Article and Find Full Text PDF

The use of high-quality graphene as a local probe in combination with photo excitation helps to establish a deep mechanistic understanding of charge generation/quenching processes under lying the graphene/environment interface. By combining a non-destructive bottom-up assembly technique with sensitive graphene-based transistors, a bistable [2]rotaxane-graphene hybrid device, which exhibits a symmetric mirror-image photoswitching effect with logic capabilities, is produced.

View Article and Find Full Text PDF

Incorporation of two biphenylene-bridged 4,4'-bipyridinium extended viologen units into a para-phenylene-based cyclophane results in a synthetic receptor that is ~2 nm long and adopts a box-like geometry. This cyclophane, Ex(2)Box(4+), possesses the ability to form binary and ternary complexes with a myriad of guest molecules ranging from long π-electron-rich polycyclic aromatic hydrocarbons, such as tetracene, tetraphene, and chrysene, to π-electron-poor 2,6-dinitrotoluene, 1,2,4-trichlorobenzene, and both the 9,10- and 1,4-anthraquinone molecules. Moreover, Ex(2)Box(4+) is capable of forming one-to-one complexes with polyether macrocycles that consist of two π-electron-rich dioxynaphthalene units, namely, 1,5-dinaphtho[38]crown-10.

View Article and Find Full Text PDF

Ruthenium(II) polypyridyl complexes have emerged both as promising probes of DNA structure and as anticancer agents because of their unique photophysical and cytotoxic properties. A key consideration in the administration of those therapeutic agents is the optimization of their chemical reactivities to allow facile attack on the target sites, yet avoid unwanted side effects. Here, we present a drug delivery platform technology, obtained by grafting the surface of mesoporous silica nanoparticles (MSNPs) with ruthenium(II) dipyridophenazine (dppz) complexes.

View Article and Find Full Text PDF

The synthesis and physicochemical properties of a new class of BODIPY-based donor-acceptor π-conjugated polymers are presented. Solution-processed top-gate/bottom-contact (TG-BC) thin-film transistors on flexible plastic substrates exhibit air-stable p-channel activities with charge carrier mobilities as high as 0.17 cm(2) /V·s and current on/off ratios of 10(5) -10(6) , the highest reported to date for a BODIPY-based semiconductor.

View Article and Find Full Text PDF

Mechanized silica nanoparticles, equipped with pillar[5]arene-[2]pseudorotaxane nanovalves, operate in biological media to trap cargos within their nanopores, but release them when the pH is lowered or a competitive binding agent is added. Although cargo size plays an important role in cargo loading, cargo charge-type does not appear to have any significant influence on the amount of cargo loading or its release. These findings open up the possibility of using pillar[n]arene and its derivatives for the formation of robust and dynamic nanosystems that are capable of performing useful functions.

View Article and Find Full Text PDF

We report the synthesis of two [2]catenane-containing struts that are composed of a tetracationic cyclophane (TC(4+)) encircling a 1,5-dioxynaphthalene (DNP)-based crown ether, which bears two terphenylene arms. The TC(4+) rings comprise either 1) two bipyridinium (BIPY(2+)) units or 2) a BIPY(2+) and a diazapyrenium (DAP(2+)) unit. These degenerate and nondegenerate catenanes were reacted in the presence of Cu(NO3)2⋅2.

View Article and Find Full Text PDF

The enthalpy of adsorption of CO2 on an environmentally friendly metal-organic framework, CD-MOF-2, has been determined directly for the first time using adsorption calorimetry at 25 °C. This calorimetric methodology provides a much more accurate and model-independent measurement of adsorption enthalpy than that obtained by calculation from the adsorption isotherms, especially for systems showing complex and strongly exothermic adsorption behavior. The differential enthalpy of CO2 adsorption shows enthalpy values in line with chemisorption behavior.

View Article and Find Full Text PDF

The 2,9-dimethyldiazaperopyrenium dication can be made from a ubiquitous and inexpensive feedstock in three simple steps as its chloride salt. When mixed with powdered graphite at 23 °C, this behemoth of a molecular compound exfoliates graphite to graphene in water under mild conditions.

View Article and Find Full Text PDF

Three structures, based on γ-cyclodextrin (γ-CD) and metal ions (Cu(2+), Li(+), Na(+), and Rb(+)), have been prepared in aqueous and alkaline media and characterized structurally by single-crystal X-ray diffraction. Their dimeric assemblies adopt cylindrical channels along the c axes in the crystals. Coordinative and hydrogen bonding between the cylinders and the solvent molecules lead to the formation of two-dimensional sheets, with the identity of the alkali-metal ion strongly influencing the precise nature of the solid-state structures.

View Article and Find Full Text PDF

We announce the establishment of a new family of macrocycles--the asararenes, which are based on para-methylene linked "asarol methyl ether" (1,2,4,5-tetramethoxybenzene) units. Macrocycles with 6-12 aromatic units have been synthesized and isolated in a single step from asarol methyl ether and paraformaldehyde. Even larger rings, with up to 15 asarol methyl ether units, have been observed by high-resolution mass spectrometry.

View Article and Find Full Text PDF

The docking by neutral and charged guests selectively in two geometrically different binding pockets in a dynamic [2]catenane host is demonstrated in the solid state by manipulating its redox chemistry. The change in redox properties, not only alters the affinity of the host toward neutral and charged guests, but it also induces a profound change in the geometry of the host to accommodate them. X-ray crystallography, performed on the two different 1:1 complexes, demonstrates unambiguously the fact that the [2]catenane host provides a uniquely different binding pocket wherein a methyl viologen dication is stabilized by interacting with a bipyridinium radical cation, despite the presence of Coulombic repulsions.

View Article and Find Full Text PDF

Most organic radicals possess short lifetimes and quickly undergo dimerization or oxidation. Here, we report on the synthesis by radical templation of a class of air- and water-stable organic radicals, trapped within a homo[2]catenane composed of two rigid and fixed cyclobis(paraquat-p-phenylene) rings. The highly energetic octacationic homo[2]catenane, which is capable of accepting up to eight electrons, can be configured reversibly, both chemically and electrochemically, between each one of six experimentally accessible redox states (0, 2+, 4+, 6+, 7+, and 8+) from within the total of nine states evaluated by quantum mechanical methods.

View Article and Find Full Text PDF

A homologous series of [2]rotaxanes, in which cyclobis(paraquat-p-phenylene) (CBPQT(4+)) serves as the ring component, while the dumbbell components all contain single 4,4'-bipyridinium (BIPY(2+)) units centrally located in the midst of oligomethylene chains of varying lengths, have been synthesized by taking advantage of radical templation and copper-free azide-alkyne 1,3-dipolar cycloadditions in the formation of their stoppers. Cyclic voltammetry, UV/vis spectroscopy, and mass spectrometry reveal that the BIPY(•+) radical cations in this series of [2]rotaxanes are stabilized against oxidation, both electrochemically and by atmospheric oxygen. The enforced proximity between the BIPY(2+) units in the ring and dumbbell components gives rise to enhanced Coulombic repulsion, destabilizing the ground-state co-conformations of the fully oxidized forms of these [2]rotaxanes.

View Article and Find Full Text PDF

The electronic properties of tetrathiafulvalene (TTF) can be tuned by attaching electron-donating or electron-withdrawing substituents. An electron-rich macrocyclic polyether containing two TTF units of different constitutions, namely 4,4'-bis(hydroxymethyl)tetrathiafulvalene (OTTFO) and 4,4'-bisthiotetrathiafulvalene (STTFS), has been synthesized. On two-electron oxidation, a hetero radical dimer is formed between OTTFO(•+) and STTFS(•+).

View Article and Find Full Text PDF

pH-responsive megagates have been fabricated around mesoporous silica material SBA-15 in order to mechanize the mesopores. These megagates remain closed in neutral conditions, but open at pH 5. The capping components of the megagates were designed to be capable of controlling pores up to 6.

View Article and Find Full Text PDF

Molecular gauge blocks, based on 1-7, 9-11 paraxylene rings, have been synthesized as part of a homologous series of oligoparaxylenes (OPXs) with a view to providing a molecular tool box for the construction of nano architectures-such as spheres, cages, capsules, metal-organic frameworks (MOFs), metal-organic polyhedrons (MOPs) and covalent-organic frameworks (COFs), to name but a few-of well-defined sizes and shapes. Twisting between the planes of contiguous paraxylene rings is generated by the steric hindrance associated with the methyl groups and leads to the existence of soluble molecular gauge blocks without the need, at least in the case of the lower homologues, to introduce long aliphatic side chains onto the phenylene rings in the molecules. Although soluble molecular gauge blocks with up to seven consecutive benzenoid rings have been prepared employing repeating paraxylene units, in the case of the higher homologues it becomes necessary to introduce hexyl groups instead of methyl groups onto selected phenylene rings to maintain solubility.

View Article and Find Full Text PDF