Assessing functional motor changes and their relationship to discharge needs in the pediatric intensive care unit (PICU) population is difficult given challenges quantifying small functional gains with current tools. Therefore, we compared the Physical Abilities and Mobility Scale (PAMS) to the Functional Status Scale (FSS) in PICU patients to assess correlation and differences and association with discharge needs. This study was a retrospective chart review of all patients (2-18 years old) admitted to the PICU and cardiac PICU for over 9 months who received early mobility services, including PAMS and FSS scoring.
View Article and Find Full Text PDFPure spin currents can be generated via thermal excitations of magnons. These magnon spin currents serve as carriers of information in insulating materials, and controlling them using electrical means may enable energy efficient information processing. Here, we demonstrate electric field control of magnon spin currents in the antiferromagnetic insulator CrO.
View Article and Find Full Text PDFA superconducting diode is an electronic device that conducts supercurrent and exhibits zero resistance primarily for one direction of applied current. Such a dissipationless diode is a desirable unit for constructing electronic circuits with ultralow power consumption. However, realizing a superconducting diode is fundamentally and technologically challenging, as it usually requires a material structure without a centre of inversion, which is scarce among superconducting materials.
View Article and Find Full Text PDFWe present an experimental study of time refraction of spin waves (SWs) propagating in microscopic waveguides under the influence of time-varying magnetic fields. Using space- and time-resolved Brillouin light scattering microscopy, we demonstrate that the broken translational symmetry along the time coordinate results in a loss of energy conservation for SWs and thus allows for a broadband and controllable shift of the SW frequency. With an integrated design of SW waveguide and microscopic current line for the generation of strong, nanosecond-long, magnetic field pulses, a conversion efficiency up to 39% of the carrier SW frequency is achieved, significantly larger compared to photonic systems.
View Article and Find Full Text PDFThe ability to control the potential landscape in a medium of interacting particles could lead to intriguing collective behavior and innovative functionalities. Here, we utilize spatially reconfigurable magnetic potentials of a pinwheel artificial-spin-ice (ASI) structure to tailor the motion of superconducting vortices. The reconstituted chain structures of the magnetic charges in the pinwheel ASI and the strong interaction between magnetic charges and superconducting vortices allow significant modification of the transport properties of the underlying superconducting thin film, resulting in a reprogrammable resistance state that enables a reversible and switchable vortex Hall effect.
View Article and Find Full Text PDFAmongst the rare-earth perovskite nickelates, LaNiO (LNO) is an exception. While the former have insulating and antiferromagnetic ground states, LNO remains metallic and non-magnetic down to the lowest temperatures. It is believed that LNO is a strange metal, on the verge of an antiferromagnetic instability.
View Article and Find Full Text PDFWe show that a non-Markovian behavior can appear in a type of Markovian multimeric channel. Such a channel consists of N independent subunits, and each subunit has at least one open state and more than one closed state. Suppose the open state of the channel is defined as M out of N subunits in the open state with N>M>0.
View Article and Find Full Text PDFThe charge and spin of the electrons in solids have been extensively exploited in electronic devices and in the development of spintronics. Another attribute of electrons-their orbital nature-is attracting growing interest for understanding exotic phenomena and in creating the next-generation of quantum devices such as orbital qubits. Here, we report on orbital-flop induced magnetoresistance anisotropy in CeSb.
View Article and Find Full Text PDFTailoring Gilbert damping of metallic ferromagnetic thin films is one of the central interests in spintronics applications. Here we report a giant Gilbert damping anisotropy in epitaxial Co_{50}Fe_{50} thin films with a maximum-minimum damping ratio of 400%, determined by broadband spin-torque ferromagnetic resonance as well as inductive ferromagnetic resonance. We conclude that the origin of this damping anisotropy is the variation of the spin orbit coupling for different magnetization orientations in the cubic lattice, which is further corroborated from the magnitude of the anisotropic magnetoresistance in Co_{50}Fe_{50}.
View Article and Find Full Text PDFExperimental records of single molecules or ion channels from fluorescence microscopy and patch-clamp electrophysiology often include high-frequency noise and baseline fluctuations that are not generated by the system under investigation and have to be removed. Moreover, multiple channels or conductance levels can be present at a time in the data that need to be quantified to accurately understand the behavior of the system. Manual procedures for removing these fluctuations and extracting conducting states or multiple channels are laborious, prone to subjective bias, and likely to hinder the processing of often very large data sets.
View Article and Find Full Text PDFGeometric frustration emerges when local interaction energies in an ordered lattice structure cannot be simultaneously minimized, resulting in a large number of degenerate states. The numerous degenerate configurations may lead to practical applications in microelectronics, such as data storage, memory and logic. However, it is difficult to achieve very high degeneracy, especially in a two-dimensional system.
View Article and Find Full Text PDFWe show that a femtosecond spin-current pulse can generate terahertz (THz) transients at Rashba interfaces between two nonmagnetic materials. Our results unambiguously demonstrate the importance of the interface in this conversion process that we interpret in terms of the inverse Rashba Edelstein effect, in contrast to the THz emission in the bulk conversion process via the inverse spin-Hall effect. Furthermore, we show that at Rashba interfaces the THz-field amplitude can be controlled by the helicity of the light.
View Article and Find Full Text PDFHigh resolution total internal reflection (TIRF) microscopy (TIRFM) together with detailed computational modeling provides a powerful approach towards the understanding of a wide range of Ca signals mediated by the ubiquitous inositol 1,4,5-trisphosphate (IP) receptor (IPR) channel. Exploiting this fruitful collaboration further requires close agreement between the models and observations. However, elementary Ca release events, puffs, imaged through TIRFM do not show the rapid single-channel openings and closings during and between puffs as are present in simulated puffs using data-driven single channel models.
View Article and Find Full Text PDFMagnetic insulators, such as yttrium iron garnet (YFeO), are ideal materials for ultralow power spintronics applications due to their low energy dissipation and efficient spin current generation and transmission. Recently, it has been realized that spin dynamics can be driven very effectively in micrometer-sized YFeO/Pt heterostructures by spin-Hall effects. We demonstrate here the excitation and detection of spin dynamics in YFeO/Pt nanowires by spin-torque ferromagnetic resonance.
View Article and Find Full Text PDFThe range of action of intracellular messengers is determined by their rates of diffusion and degradation. Previous measurements in oocyte cytoplasmic extracts indicated that the Ca-liberating second messenger inositol trisphosphate (IP) diffuses with a coefficient (~280 μm s) similar to that in water, corresponding to a range of action of ~25 μm. Consequently, IP is generally considered a "global" cellular messenger.
View Article and Find Full Text PDFArtificial ices enable the study of geometrical frustration by design and through direct observation. However, it has proven difficult to achieve tailored long-range ordering of their diverse configurations, limiting both fundamental and applied research directions. We designed an artificial spin structure that produces a magnetic charge ice with tunable long-range ordering of eight different configurations.
View Article and Find Full Text PDFIn planar structures, the vortex resonance frequency changes little as a function of an in-plane magnetic field as long as the vortex state persists. Altering the topography of the element leads to a vastly different dynamic response that arises due to the local vortex core confinement effect. In this work, we studied the magnetic excitations in non-planar ferromagnetic dots using a broadband microwave spectroscopy technique.
View Article and Find Full Text PDFWe report on the observation of the spin Seebeck effect in antiferromagnetic MnF_{2}. A device scale on-chip heater is deposited on a bilayer of MnF_{2} (110) (30 nm)/Pt (4 nm) grown by molecular beam epitaxy on a MgF_{2} (110) substrate. Using Pt as a spin detector layer, it is possible to measure the thermally generated spin current from MnF_{2} through the inverse spin Hall effect.
View Article and Find Full Text PDFBecause of its transverse nature, spin Hall effects (SHE) provide the possibility to excite and detect spin currents and magnetization dynamics even in magnetic insulators. Magnetic insulators are outstanding materials for the investigation of nonlinear phenomena and for novel low power spintronics applications because of their extremely low Gilbert damping. Here, we report on the direct imaging of electrically driven spin-torque ferromagnetic resonance (ST-FMR) in the ferrimagnetic insulator Y_{3}Fe_{5}O_{12} based on the excitation and detection by SHEs.
View Article and Find Full Text PDFMagnetic insulators such as yttrium iron garnet, Y3Fe5O12, with extremely low magnetic damping have opened the door for low power spin-orbitronics due to their low energy dissipation and efficient spin current generation and transmission. We demonstrate here reliable and efficient epitaxial growth and nanopatterning of Y3Fe5O12 thin-film based nanostructures on insulating Gd3Ga5O12 substrates. In particular, our fabrication process is compatible with conventional sputtering and lift-off, and does not require aggressive ion milling which may be detrimental to the oxide thin films.
View Article and Find Full Text PDFAmyloid beta (Aβ) oligomers associated with Alzheimer's disease (AD) form Ca2+-permeable plasma membrane pores, leading to a disruption of the otherwise well-controlled intracellular calcium (Ca2+) homeostasis. The resultant up-regulation of intracellular Ca2+ concentration has detrimental implications for memory formation and cell survival. The gating kinetics and Ca2+ permeability of Aβ pores are not well understood.
View Article and Find Full Text PDFThe formation of soap bubbles from thin films is accompanied by topological transitions. Here we show how a magnetic topological structure, a skyrmion bubble, can be generated in a solid-state system in a similar manner. Using an inhomogeneous in-plane current in a system with broken inversion symmetry, we experimentally "blow" magnetic skyrmion bubbles from a geometrical constriction.
View Article and Find Full Text PDF