Publications by authors named "JC Murrell"

This capsule review is a discussion of myofascial pain syndrome in small animals. The history of myofascial pain syndrome is discussed as well as facts and theories behind the aetiology and treatment of this syndrome. Diagnostic techniques are both discussed and illustrated.

View Article and Find Full Text PDF

Considering the increasing interest in understanding the biotic component of methane removal from our atmosphere, it becomes essential to study the physiological characteristics and genomic potential of methanotroph isolates, especially their traits allowing them to adapt to elevated growth temperatures. The genetic signatures of species have been detected in many terrestrial and aquatic ecosystems. A small set of representatives of this genus has been isolated and maintained in culture.

View Article and Find Full Text PDF

Chronic pain in humans is associated with impaired working memory but it is not known whether this is the case in long-lived companion animals, such as dogs, who are especially vulnerable to developing age-related chronic pain conditions. Pain-related impairment of cognitive function could have detrimental effects on an animal's ability to engage with its owners and environment or to respond to training or novel situations, which may in turn affect its quality of life. This study compared the performance of 20 dogs with chronic pain from osteoarthritis and 21 healthy control dogs in a disappearing object task of spatial working memory.

View Article and Find Full Text PDF

Here we report the complete genome sequence of two moderately thermophilic methanotrophs isolated from a landfill methane biofilter, (Norfolk) and (Norfolk).

View Article and Find Full Text PDF

Co-oxidation of a range of alkenes, dienes, and aromatic compounds by whole cells of the isoprene-degrading bacterium Rhodococcus sp. AD45 expressing isoprene monooxygenase was investigated, revealing a relatively broad substrate specificity for this soluble diiron centre monooxygenase. A range of 1-alkynes (C -C ) were tested as potential inhibitors.

View Article and Find Full Text PDF

Ammonia oxidizers are key players in the global nitrogen cycle and are responsible for the oxidation of ammonia to nitrite, which is further oxidized to nitrate by other microorganisms. Their activity can lead to adverse effects on some human-impacted environments, including water pollution through leaching of nitrate and emissions of the greenhouse gas nitrous oxide (N2O). Ammonia monooxygenase (AMO) is the key enzyme in microbial ammonia oxidation and shared by all groups of aerobic ammonia oxidizers.

View Article and Find Full Text PDF

The use of formal canine quality of life (QOL) assessment tools in veterinary practice has been recommended. An online survey investigated awareness, use and barriers to use of these tools in the UK. An anonymous 24-question survey was advertised through veterinary groups and social media.

View Article and Find Full Text PDF

Isoprene monooxygenase (IsoMO, encoded by ) initiates the oxidation of the climate-active gas isoprene, with the genes and nearly always found adjacent to in extant and metagenome-derived isoprene degraders. The roles of and are uncertain, although each is essential to isoprene degradation. We report here the characterization of these proteins from two model isoprene degraders, sp.

View Article and Find Full Text PDF

The ammonia monooxygenase (AMO) is a key enzyme in ammonia-oxidizing archaea, which are abundant and ubiquitous in soil environments. The AMO belongs to the copper-containing membrane monooxygenase (CuMMO) enzyme superfamily, which also contains particulate methane monooxygenase (pMMO). Enzymes in the CuMMO superfamily are promiscuous, which results in co-oxidation of alternative substrates.

View Article and Find Full Text PDF

Stable-isotope probing (SIP) enables researchers to target active populations within complex microbial communities, which is achieved by providing growth substrates enriched in heavy isotopes, usually in the form of C, O, or N. After growth on the substrate and subsequent extraction of microbial biomarkers, typically nucleic acids or proteins, the SIP technique is used for the recovery and analysis of isotope-labelled biomarkers from active microbial populations. In the years following the initial development of DNA- and RNA-based SIP, it was common practice to characterize labelled populations by targeted gene analysis.

View Article and Find Full Text PDF

Bacteria that inhabit soils and the leaves of trees partially mitigate the release of the abundant volatile organic compound, isoprene (2-methyl-1,3-butadiene). While the initial steps of isoprene metabolism were identified in Rhodococcus sp. AD45 two decades ago, the isoprene metabolic pathway still remains largely undefined.

View Article and Find Full Text PDF

Opioids are a key component of multimodal analgesia. Methadone is licensed in Europe for IV, IM and SC use in dogs despite there being no published studies assessing the analgesic efficacy of SC administration. Our intention was to compare the analgesic effect of IV or SC methadone.

View Article and Find Full Text PDF

Background: Ubiquitous and diverse marine microorganisms utilise the abundant organosulfur molecule dimethylsulfoniopropionate (DMSP), the main precursor of the climate-active gas dimethylsulfide (DMS), as a source of carbon, sulfur and/or signalling molecules. However, it is currently difficult to discern which microbes actively catabolise DMSP in the environment, why they do so and the pathways used.

Results: Here, a novel DNA-stable isotope probing (SIP) approach, where only the propionate and not the DMS moiety of DMSP was C-labelled, was strategically applied to identify key microorganisms actively using DMSP and also likely DMS as a carbon source, and their catabolic enzymes, in North Sea water.

View Article and Find Full Text PDF

Isoprene is a climate-active biogenic volatile organic compound (BVOC), emitted into the atmosphere in abundance, mainly from terrestrial plants. Soil is an important sink for isoprene due to its consumption by microbes. In this study, we report the ability of a soil bacterium to degrade isoprene.

View Article and Find Full Text PDF

Ammonia-oxidizing archaea (AOA) and bacteria (AOB) perform key steps in the global nitrogen cycle, the oxidation of ammonia to nitrite. While the ammonia oxidation pathway is well characterized in AOB, many knowledge gaps remain about the metabolism of AOA. Hydroxylamine is an intermediate in both AOB and AOA, but homologues of hydroxylamine dehydrogenase (HAO), catalyzing bacterial hydroxylamine oxidation, are absent in AOA.

View Article and Find Full Text PDF

Ammonia-oxidising archaea (AOA) are environmentally important microorganisms involved in the biogeochemical cycling of nitrogen. Routine cultivation of AOA is exclusively performed in liquid cultures and reports on their growth on solid medium are scarce. The ability to grow AOA on solid medium would be beneficial for not only the purification of enrichment cultures but also for developing genetic tools.

View Article and Find Full Text PDF

Natural gas seeps release significant amounts of methane and other gases including ethane and propane contributing to global climate change. In this study, bacterial actively consuming short-chain alkanes were identified by cultivation, whole-genome sequencing, and stable-isotope probing (SIP)-metagenomics using C-propane and C-ethane from two different natural gas seeps, Pipe Creek and Andreiasu Everlasting Fire. Nearly 100 metagenome-assembled genomes (MAGs) (completeness 70-99%) were recovered from both sites.

View Article and Find Full Text PDF

Isoprene (2-methyl-1,3-butadiene) is a climate-active gas released to the atmosphere in large quantities, comparable to methane in magnitude. Several bacteria have been isolated which can grow on isoprene as a sole carbon and energy source, but very little information is available about the degradation of isoprene by these bacteria at the biochemical level. Isoprene utilization is dependent on a multistep pathway, with the first step being the oxidation of isoprene to epoxy-isoprene.

View Article and Find Full Text PDF

is a toxin-producing microalga, which causes harmful algal blooms globally, frequently leading to massive fish kills that have adverse ecological and economic implications for natural waterways and aquaculture alike. The dramatic effects observed on fish are thought to be due to algal polyether toxins, known as the prymnesins, but their lack of environmental detection has resulted in an uncertainty about the true ichthyotoxic agents. Using qPCR, we found elevated levels of and its lytic virus, PpDNAV-BW1, in a fish-killing bloom on the Norfolk Broads, United Kingdom, in March 2015.

View Article and Find Full Text PDF
Article Synopsis
  • The cuticular microbiomes of Acromyrmex leaf-cutting ants show a balance between vertically transmitted bacteria, like Pseudonocardia, which help control harmful fungi, and the potential for acquiring new bacteria, suggesting a unique microbiome dynamic.
  • Researchers used RNA-stable isotope probing and other methods to demonstrate that these ants can sustain a variety of beneficial bacteria by providing resources that enhance competition and the growth of antibiotic-producing strains.
  • The study supports the idea that competition-based screening helps maintain a strong mutualism between leaf-cutting ants and their microbiome, offering insights into the stability of other complex biological relationships.
View Article and Find Full Text PDF

Background: Isoprene accounts for about half of total biogenic volatile organic compound emissions globally, and as a climate active gas it plays a significant and varied role in atmospheric chemistry. Terrestrial plants are the largest source of isoprene, with willow (Salix) making up one of the most active groups of isoprene producing trees. Bacteria act as a biological sink for isoprene and those bacteria associated with high isoprene-emitting trees may provide further insight into its biodegradation.

View Article and Find Full Text PDF

The Zoige wetland of the Tibetan Plateau is one of the largest alpine wetlands in the world and a major emission source of methane. Methane oxidation by methanotrophs can counteract the global warming effect of methane released in the wetlands. Understanding methanotroph activity, diversity and metabolism at the molecular level can guide the isolation of the uncultured microorganisms and inform strategy-making decisions and policies to counteract global warming in this unique ecosystem.

View Article and Find Full Text PDF

species are saprophytic soil bacteria that produce a diverse array of specialized metabolites, including half of all known antibiotics. They are also rhizobacteria and plant endophytes that can promote plant growth and protect against disease. Several studies have shown that streptomycetes are enriched in the rhizosphere and endosphere of the model plant .

View Article and Find Full Text PDF

Background: Conventional methods of agricultural pest control and crop fertilisation are unsustainable. To meet growing demand, we must find ecologically responsible means to control disease and promote crop yields. The root-associated microbiome can aid plants with disease suppression, abiotic stress relief, and nutrient bioavailability.

View Article and Find Full Text PDF

Isoprene, a volatile hydrocarbon emitted largely by plants, plays an important role in regulating the climate in diverse ways, such as reacting with free radicals in the atmosphere to produce greenhouse gases and pollutants. Isoprene is both deposited and formed in soil, where it can be consumed by some soil microbes, although much remains to be understood about isoprene consumption in tropical soils. In this study, isoprene-degrading bacteria from soils associated with tropical plants were investigated by cultivation and cultivation-independent approaches.

View Article and Find Full Text PDF