Publications by authors named "JC Loudet"

We present numerical simulations on pairwise interactions between particles trapped at an isotropic-nematic liquid crystal (Iso-N) interface. The particles are subject to elastocapillary interactions arising from interfacial deformations and elastic distortions of the nematic phase. We use a recent model based on a phase-field approach [see Qiu et al.

View Article and Find Full Text PDF

We present numerical simulations of a particle trapped at the isotropic-nematic liquid crystal (Iso-N) interface. We use our recent model, based on a phase-field approach [see Qiu et al., Phys.

View Article and Find Full Text PDF

We propose a phase-field model to study interfacial flows of nematic liquid crystals that couple the capillary forces on the interface with the elastic stresses in the nematic phase. The theoretical model has two key ingredients: A tensor order parameter that provides a consistent description of the molecular and distortional elasticity, and a phase-field formalism that accurately represents the interfacial tension and the nematic anchoring stress by approximating a sharp-interface limit. Using this model, we carry out finite-element simulations of drop retraction in a surrounding fluid, with either component being nematic.

View Article and Find Full Text PDF

We use dynamic numerical simulations to investigate the role of particle rotation in pairwise capillary interactions of particles trapped at a fluid interface. The fluid interface is modeled with a phase-field method which is coupled to the Navier-Stokes equations to solve for the flow dynamics. Numerical solutions are found using a finite element scheme in a bounded two-dimensional geometry.

View Article and Find Full Text PDF

We numerically investigate the influence of interfacial deformations on the drag force exerted on a particle straddling a fluid interface. We perform finite element simulations of the two-phase flow system in a bounded two-dimensional geometry. The fluid interface is modeled with a phase-field method which is coupled to the Navier-Stokes equations to solve for the flow dynamics.

View Article and Find Full Text PDF

We report an experimental investigation of the structure of periodic patterns observed in the meniscus of free-standing smectic films. Combination of polarizing optical microscopy and phase shifting interferometry enabled us to obtain new information on the structure of the meniscus, and in particular, on the topography of the smectic-air interface. We investigate the profile of the undulations in the striped structure in the thin part of the meniscus, change of the stripe period with the meniscus thickness and subsequent transition into a two-dimensional structure.

View Article and Find Full Text PDF

A micrometer-sized spherical particle classically equilibrates at the water-air interface in partial wetting configuration, causing about no deformation to the interface. In condition of thermal equilibrium, the particle just undergoes faint Brownian motion, well visible under a microscope. We report experimental observations when the particle is made of a light-absorbing material and is heated up by a vertical laser beam.

View Article and Find Full Text PDF

The surface integral equation (SIE) method is used for the computational study of radiation torque on arbitrarily shaped homogeneous particles. The Multilevel Fast Multipole Algorithm (MLFMA) is employed to reduce memory requirements and improve the capability of SIE. The resultant matrix equations are solved iteratively to obtain equivalent electric and magnetic currents.

View Article and Find Full Text PDF

We report numerical calculations on the mechanical effects of light on micrometer-sized dielectric ellipsoids immersed in water. We used a simple two-dimensional ray-optics model to compute the radiation pressure forces and torques exerted on the object as a function of position and orientation within the laser beam. Integration of the equations of motion, written in the Stokes limit, yields the particle dynamics that we investigated for different aspect ratios k.

View Article and Find Full Text PDF

We report experimental observations of the mechanical effects of light on ellipsoidal micrometre-sized dielectric particles, in water as the continuous medium. The particles, made of polystyrene, have shapes varying between near disk-like (aspect ratio k = 0.2) to very elongated needle-like (k = 8).

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates how tiny particles behave when mixed in a special liquid known as nematic micellar solution, focusing on latex spheres that range from 190 to 780 nanometers in diameter.
  • The results reveal that larger particles tend to form compact clusters or V-shaped structures due to attractive forces, while smaller particles form elongated chains aligned with the liquid's nematic axis.
  • Simulation models suggest that the motion and interactions among the smaller particles change from elastic forces to shorter-range attractions, offering insight into the mechanisms of particle aggregation and highlighting the significance of particle diffusion at very small scales.
View Article and Find Full Text PDF

Colloidal particles dispersed in a partially ordered medium, such as a liquid crystal (LC) phase, disturb its alignment and are subject to elastic forces. These forces are long-ranged, anisotropic and tunable through temperature or external fields, making them a valuable asset to control colloidal assembly. The latter is very sensitive to the particle geometry since it alters the interactions between the colloids.

View Article and Find Full Text PDF

We report the experimental observation of anisotropic diffusion of polystyrene particles immersed in a lyotropic liquid crystal with two different anchoring conditions. Diffusion is shown to obey the Stokes-Einstein law for particle diameters ranging from 190 nm up to 2 μm. In the case of prolate micelles, the beads diffuse four times faster along the director than in perpendicular directions, D||/D[Symbol: see text] ≈ 4.

View Article and Find Full Text PDF

The anchoring of liquid-crystal (LC) mesogens to the surfaces of colloids is an important factor in determining intercolloidal interactions and the symmetry of the ensuing colloidal assembly in nematic colloids. The dynamic control of surface anchoring could therefore provide a handle to tune the colloidal organization and resulting properties in these systems. In this article, we report our results on the study of thermotropic nematic LC (E7) dispersions of silica and glass microcolloids bearing photosensitive surface azobenzene groups.

View Article and Find Full Text PDF

This work reports a detailed numerical study of the behavior of ellipsoid-shaped particles adsorbed at fluid interfaces. Former experiments have shown that micrometer-sized prolate ellipsoids aggregate under the action of strong and long-ranged capillary interactions. The latter are due to nonplanar contact lines and to the resulting deformations of the interface in the vicinity of the trapped objects.

View Article and Find Full Text PDF

Using optical microscopy, phase shifting interferometry, and atomic force microscopy, we characterize the undulated structures which appear in the meniscus of freestanding ferroelectric smectic-C* films. We demonstrate that these periodic structures correspond to undulations of the smectic-air interface. The resulting striped pattern disappears in the untilted smectic-A phase.

View Article and Find Full Text PDF

We experimentally study the behavior of micrometer-sized prolate ellipsoidal particles dispersed in a nematic liquid crystal. The latter is an aqueous solution of rodlike micelles. When embedded into such a solvent, ellipsoids with small enough aspect ratios aggregate to form anisotropic structures oriented at an angle with respect to the local background director (as already observed for spheres).

View Article and Find Full Text PDF

We experimentally and theoretically investigate the shapes of contact lines on the surfaces of micrometer-sized polystyrene ellipsoids at the water-air interface. By combining interferometry and optical trapping, we directly observe quadrupolar symmetry of the interface deformations around such particles. We then develop numerical solutions of the partial wetting problem for ellipsoids, and use these solutions to deduce the shapes of the corresponding contact lines and the values of the contact angles, theta(c)(k), as a function of the ellipsoid aspect ratio k.

View Article and Find Full Text PDF

We report on the behavior of micron-sized prolate ellipsoids trapped at an oil-water interface. The particles experience strong, anisotropic, and long-ranged attractive capillary interactions which greatly exceed the thermal energy k(B)T. Depending on surface chemistry, the particles aggregate into open structures or chains.

View Article and Find Full Text PDF

This experimental paper deals with phase separations of binary mixtures composed of a continuous liquid crystal phase and an isotropic dispersed phase. In contrast to isotropic binary mixtures, the investigated mixtures do not lead to a full phase separation but to a self-ordering of colloidal particles, as reported earlier (Loudet, J. C.

View Article and Find Full Text PDF

The Stokes-Einstein relation relates the diffusion coefficient of a spherical Brownian particle in a viscous fluid to its friction coefficient. For a particle suspended in anisotropic liquid, theory predicts that the drag coefficient should also be anisotropic. Using video microscopy coupled with particle tracking routines, the Brownian fluctuations of micrometer-sized particles were analyzed to yield a quantitative measurement of the diffusion coefficients parallel and perpendicular to the nematic director.

View Article and Find Full Text PDF

We present a statistical mechanical treatment relating the macroscopic adhesion energy of two surfaces, which can be obtained by micropipette aspiration studies, to the microscopic adhesion energy between individual bonds. The treatment deals with the case of weak reversible bonds, so that the equilibrium partition function has significance. This description is coherent with previous theories.

View Article and Find Full Text PDF

We study the behavior of colloidal particles suspended in a thermotropic nematic solvent in the presence of an electric field. For normal boundary conditions of the nematic director at the particles' surface, we show experimentally that an electric field applied along the dipolar axis of an elastic dipole induces a transition to an elastic quadrupolar configuration. Turning the field off makes the system go back to the initial state.

View Article and Find Full Text PDF

Some binary mixtures exist as a single phase at high temperatures and as two phases at lower temperatures; rapid cooling therefore induces phase separation that proceeds through the initial formation of small particles and subsequent growth and coarsening. In solid and liquid media, this process leads to growing particles with a range of sizes, which eventually separate to form a macroscopically distinct phase. Such behaviour is of particular interest in systems composed of an isotropic fluid and a liquid crystal, where the random distribution of liquid-crystal droplets in an isotropic polymer matrix may give rise to interesting electro-optical properties.

View Article and Find Full Text PDF