We show that a grating amplitude stationary in space but oscillating in time can be modeled as independent gratings traveling in opposite directions, interacting almost exclusively with waves traveling in the same direction. We reproduce the key features of traveling gratings: Amplification, field compression, and photon production are evident when the local wave speed equals the grating velocity. We speculate that these stationary but oscillating gratings may prove easier to realize experimentally than traveling gratings.
View Article and Find Full Text PDFTime-varying metamaterials rely on large and fast changes of the linear permittivity. Beyond the linear terms, however, the effect of a non-perturbative modulation of the medium on harmonic generation remains largely unexplored. In this work, we study second harmonic generation at an optically pumped time-varying interface between air and a 310 nm Indium Tin Oxide film.
View Article and Find Full Text PDFGratings which are in apparent motion reveal some startling properties for classical radiation, especially for luminal gratings traveling at or around the speed of light. We show here that their quantum properties are even more remarkable, their effective refractive index modeling the Schwarzschild singularity which as we show generates spontaneous Hawking radiation in correlated photon pairs. Subjected to external radiation, luminal gratings provoke stimulated emission of photon pairs which we propose as a possible means of observing Hawking radiation in the laboratory.
View Article and Find Full Text PDFTime dependent systems in general do not conserve photons nor do they conserve energy. However when parity-time symmetry holds Maxwell's equations can sometimes both conserve photon number and energy. Here we show that photon conservation is the more widely applicable law which can hold in circumstances where energy conservation is violated shedding further light on an amplification mechanism identified in previous papers as a process of conserved photons climbing a frequency ladder.
View Article and Find Full Text PDFLight Sci Appl
September 2022
Negative refraction, an unnatural optical phenomenon in which the incident and the refracted waves reside on the same side of the surface normal, has been demonstrated with the invention of negative index media based on artificially engineered photonic structures called metamaterials. It has received wide attention due to its potential applications in imaging, nonlinear optics, and electromagnetic cloaking. However, it is highly challenging to realize negative refraction operating at all angles and with the perfect transmission.
View Article and Find Full Text PDFExperimental studies of have been recently performed to determine the optical effect of adsorption of arrays of gold nanoparticles, NPs (16 nm or 40 nm in diameter) on reflective substrates (Ma , , 2018, , 4604-4616; Ma , , 2020, , 328-336) and on transparent interfaces (Montelongo , , 2017, 16, 1127-1135). As predicted by the theory (Sikdar , , 2016, , 20486-20498), a reflection quenching effect was observed on the reflective substrates, in the frequency domain centred around the nanoparticle localised plasmon resonance. Those results showed a broad dip in reflectivity, which was deepening and red-shifting with increasing array densities.
View Article and Find Full Text PDFAn Archimedes' Screw captures water, feeding energy into it by lifting it to a higher level. We introduce the first instance of an optical Archimedes' Screw, and demonstrate how this system is capable of capturing light, dragging it and amplifying it. We unveil new exact analytic solutions to Maxwell's Equations for a wide family of chiral space-time media, and show their potential to achieve chirally selective amplification within widely tunable parity-time-broken phases.
View Article and Find Full Text PDFSymmetry deepens our insight into a physical system and its interplay with topology enables the discovery of topological phases. Symmetry analysis is conventionally performed either in the physical space of interest, or in the corresponding reciprocal space. Here we borrow the concept of virtual space from transformation optics to demonstrate how a certain class of symmetries can be visualised in a transformed, spectrally related coordinate space, illuminating the underlying topological transitions.
View Article and Find Full Text PDFExceptional points (EPs) have been shown to be useful in bringing about sensitive optical properties based on non-Hermitian physics. For example, they have been applied in plasmonics to realize nano-sensing with extreme sensitivity. While the exceptional points are conventionally constructed by considering parity-time symmetric or anti-parity-time symmetric media, we theoretically demonstrate the possibility of generating a series of non-Hermitian systems by transforming a seed system with conventional parity-time symmetry within the transformation optics framework.
View Article and Find Full Text PDFHolography is a long-established technique to encode an object's spatial information into a lower-dimensional representation. We investigate the role of the illumination's spatial coherence properties in the success of such an imaging system through point spread function and Fourier domain analysis. Incoherent illumination is shown to result in more robust imaging performance free of diffraction artifacts at the cost of incurring background noise and sacrificing phase retrieval.
View Article and Find Full Text PDFSurface distortion splits surface plasmons asymmetrically in energy with a net lowering of zero-point energy. We contrast this with the symmetrical distortion of electronic energy levels. We use conformal mapping to demonstrate this splitting and find that surface corrugation always leads to a decrease in the zero-point energy of a metallic surface, but the decrease is not strong enough to drive a surface reconstruction on its own.
View Article and Find Full Text PDFIn order to confine waves beyond the diffraction limit, advances in fabrication techniques have enabled subwavelength structuring of matter, achieving near-field control of light and other types of waves. The price is often expensive fabrication needs and the irreversibility of device functionality, as well as the introduction of impurities, a major contributor to losses. In this Letter, we propose temporal inhomogeneities, such as a periodic drive in the electromagnetic properties of a surface which supports guided modes, as an alternative route for the coupling of propagating waves to evanescent modes across the light line, thus circumventing the need for subwavelength fabrication, and achieving the temporal counterpart of the classical Wood anomaly.
View Article and Find Full Text PDFBased on a developed theory, we show that introducing a meta-grid of sub-wavelength-sized plasmonic nanoparticles (NPs) into existing semiconductor light-emitting-devices (LEDs) can lead to enhanced transmission of light across the LED-chip/encapsulant interface. This results from destructive interference between light reflected from the chip/encapsulant interface and light reflected by the NP meta-grid, which conspicuously increase the efficiency of light extraction from LEDs. The "meta-grid", should be inserted on top of a conventional LED chip within its usual encapsulating packaging.
View Article and Find Full Text PDFMetal and dielectric have long been thought as two different states of matter possessing highly contrasting electric and optical properties. A metal is a material highly reflective to electromagnetic waves for frequencies up to the optical region. In contrast, a dielectric is transparent to electromagnetic waves.
View Article and Find Full Text PDFTime has emerged as a new degree of freedom for metamaterials, promising new pathways in wave control. However, electromagnetism suffers from limitations in the modulation speed of material parameters. Here we argue that these limitations can be circumvented by introducing a traveling-wave modulation, with the same phase velocity of the waves.
View Article and Find Full Text PDFThe fundamental semiconductor concept of doping has recently been transplanted to photonics in the platform of epsilon-near-zero (ENZ) media. By doping nonmagnetic impurities, ENZ media can exhibit almost arbitrary magnetism. However, this original photonic doping approach results only in isotropic media and thus cannot achieve impedance matching for all incident angles.
View Article and Find Full Text PDFPropagation behaviors of electromagnetic waves are governed by the equifrequency surface of the medium. Up to now, ordinary materials, including the medium exist in nature and the man-made metamaterials, always have an equifrequency surface (ellipsoid or hyperboloid) centered at zero k-point. Here we propose a new type of metamaterial possessing multiple index ellipsoids centered at arbitrary nonzero k-points.
View Article and Find Full Text PDFBy exploiting singular spatial modulations of the graphene conductivity, we design a broadband, tunable THz absorber whose efficiency approaches the theoretical upper bound for a wide absorption band with a fractional bandwidth of 185%. Strong field enhancement is exhibited by the modes of this extended structure, which is able to excite a wealth of high-order surface plasmons, enabling deeply subwavelength focusing of incident THz radiation. Previous studies have shown that the conductivity can be modulated at GHz frequencies, which might lead to the development of efficient high-speed broadband switching by an atomically thin layer.
View Article and Find Full Text PDFIn advanced field theories, there can be more than four dimensions to space, the excess dimensions described as compacted and unobservable on everyday length scales. We report a simple model, unconnected to field theory, for a compacted dimension realized in a metallic metasurface periodically structured in the form of a grating comprising a series of singularities. An extra dimension of the grating is hidden, and the surface plasmon excitations, though localized at the surface, are characterized by three wave vectors rather than the two of typical two-dimensional metal grating.
View Article and Find Full Text PDFElectron energy loss spectroscopy (EELS) and cathodoluminescence (CL) play a pivotal role in many of the cutting edge experiments in plasmonics. EELS and CL experiments are usually supported by numerical simulations, which-though accurate-may not provide as much physical insight as analytical calculations do. Fully analytical solutions to EELS and CL systems in plasmonics are rare and difficult to obtain.
View Article and Find Full Text PDFWe demonstrate a tunable plasmonic metasurface by considering a graphene sheet subject to a periodically patterned doping level. The unique optical properties of graphene result in electrically tunable plasmons that allow for extreme confinement of electromagnetic energy in the technologically significant regime of THz frequencies. Here, we add an extra degree of freedom by using graphene as a metasurface, proposing to dope it with an electrical gate patterned in the micron or submicron scale.
View Article and Find Full Text PDF