Crit Rev Biochem Mol Biol
October 2024
() is one of the most successful human pathogens, causing a severe and widespread infectious disease. The frequent emergence of multidrug-resistant (MDR) strains has exacerbated this public health crisis, particularly in underdeveloped regions. employs a sophisticated array of virulence factors to subvert host immune responses, both innate and adaptive.
View Article and Find Full Text PDFDespite the WHO's recommended treatment regimen, challenges such as patient non-adherence and the emergence of drug-resistant strains persist with TB claiming 1.5 million lives annually. In this study, we propose a novel approach by targeting the DNA replication-machinery of M.
View Article and Find Full Text PDFMycobacterium tuberculosis (M. tb) is a significant intracellular pathogen responsible for numerous infectious disease-related deaths worldwide. It uses ESX-1 T7SS to damage phagosomes and to enter the cytosol of host cells after phagocytosis.
View Article and Find Full Text PDF() genome encompasses 4,173 genes, about a quarter of which remain uncharacterized and hypothetical. Considering the current limitations associated with the diagnosis and treatment of tuberculosis, it is imperative to comprehend the pathomechanism of the disease and host-pathogen interactions to identify new drug targets for intervention strategies. Using comparative genome analysis, we identified one of the genes, Rv1509, as a signature protein exclusively present in .
View Article and Find Full Text PDFAutophagy is a crucial immune defense mechanism that controls the survival and pathogenesis of by maintaining cell physiology during stress and pathogen attack. The E3-Ub ligases (PRKN, SMURF1, and NEDD4) and autophagy receptors (SQSTM1, TAX1BP1, CALCOCO2, OPTN, and NBR1) play key roles in this process. Galectins (LGALSs), which bind to sugars and are involved in identifying damaged cell membranes caused by intracellular pathogens such as , are essential.
View Article and Find Full Text PDFTuberculosis (TB) is the second leading cause of mortality after COVID-19, with a global death toll of 1.6 million in 2021. The escalating situation of drug-resistant forms of TB has threatened the current TB management strategies.
View Article and Find Full Text PDFSevere acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) regulates autophagic flux by blocking the fusion of autophagosomes with lysosomes, causing the accumulation of membranous vesicles for replication. Multiple SARS-CoV-2 proteins regulate autophagy with significant roles attributed to ORF3a. Mechanistically, open reading frame 3a (ORF3a) forms a complex with UV radiation resistance associated, regulating the functions of the PIK3C3-1 and PIK3C3-2 lipid kinase complexes, thereby modulating autophagosome biogenesis.
View Article and Find Full Text PDF() utilizes the multifunctionality of its protein factors to deceive the host. The unabated global incidence and prevalence of tuberculosis (TB) and the emergence of multidrug-resistant strains warrant the discovery of novel drug targets that can be exploited to manage TB. This study reports the role of AAA+ family protein MoxR1 in regulating host-pathogen interaction and immune system functions.
View Article and Find Full Text PDFInfections are known to cause tumours though more attributed to viruses. Strong epidemiological links suggest association between bacterial infections and cancers as exemplified by Helicobacter pylori and Salmonella spp. Infection with Mycobacterium tuberculosis (M.
View Article and Find Full Text PDFPrior to coronavirus disease 2019 (COVID-19), tuberculosis (TB) was the worst killer among infectious diseases. The union of these two obnoxious respiratory diseases can be devastating, with severe public health implications. The COVID-19 pandemic has affected all TB-elimination programmes due to the severe burden on healthcare systems and the diversion of funds and attention towards controlling the pandemic.
View Article and Find Full Text PDFTwo structurally dissimilar 3d-4f cages having the formulae [(Co)Gd(μ-OH)(CO) (OCBu)(teaH)]·5HO () and [(Co)Dy(μ-OH)(OCBu)(teaH)]·(NO)·HO () have been isolated under similar reaction conditions and stoichiometry of the reactants. The most important factor for structural diversity seems to be the incorporation of one μ-carbonate anion in and not in . Co atoms are in a +3 oxidation state in both complexes, as shown by the Bond Valence Sum (BVS) calculations and bond lengths, and as further supported by magnetic measurements.
View Article and Find Full Text PDFIntracellular pathogens have evolved various efficient molecular armaments to subvert innate defenses. Cellular ubiquitination, a normal physiological process to maintain homeostasis, is emerging one such exploited mechanism. Ubiquitin (Ub), a small protein modifier, is conjugated to diverse protein substrates to regulate many functions.
View Article and Find Full Text PDFMycobacterium tuberculosis (M. tuberculosis) encodes an essential enzyme acetyl ornithine aminotransferase ArgD (Rv1655) of arginine biosynthetic pathway which plays crucial role in M. tuberculosis growth and survival.
View Article and Find Full Text PDFDissecting the function(s) of proteins present exclusively in () will provide important clues regarding the role of these proteins in mycobacterial pathogenesis. Using extensive computational approaches, we shortlisted ORFs/proteins unique to among 13 different species of mycobacteria and identified a hypothetical protein Rv1509 as a 'signature protein' of . This unique protein was found to be present only in and absent in all other mycobacterial species, including BCG.
View Article and Find Full Text PDF() is an intracellular pathogen that exploits moonlighting functions of its proteins to interfere with host cell functions. PE/PPE proteins utilize host inflammatory signaling and cell death pathways to promote pathogenesis. We report that PE6 protein (Rv0335c) is a secretory protein effector that interacts with innate immune toll-like receptor TLR4 on the macrophage cell surface and promotes activation of the canonical NFĸB signaling pathway to stimulate secretion of proinflammatory cytokines TNF-α, IL-12, and IL-6.
View Article and Find Full Text PDFReliable, fast, and affordable diagnosis for tuberculosis (TB) remains a challenge to reduce disease incidence in resource-poor countries. Tests based on nucleotide sequences that are signature to Mycobacterium tuberculosis have the potential to make a positive impact on case detection rates, which can eventually help control TB. Using extensive comparative bioinformatics approach, we mined the genome for M.
View Article and Find Full Text PDFReductive evolution has endowed () with moonlighting in protein functions. We demonstrate that RipA (Rv1477), a peptidoglycan hydrolase, activates the NFκB signaling pathway and elicits the production of pro-inflammatory cytokines, TNF-α, IL-6, and IL-12, through the activation of an innate immune-receptor, toll-like receptor (TLR)4. RipA also induces an enhanced expression of macrophage activation markers MHC-II, CD80, and CD86, suggestive of M1 polarization.
View Article and Find Full Text PDFPermeation through bacterial cells for exchange or uptake of biomolecules and ions invariably depend upon the existence of pore-forming proteins (porins) in their outer membrane. Mycobacterium tuberculosis (M. tb) harbours one of the most rigid cell envelopes across bacterial genera and is devoid of the classical porins for solute transport across the cell membrane.
View Article and Find Full Text PDFInnate immune signaling and xenophagy are crucial innate defense strategies exploited by the host to counteract intracellular pathogens with ubiquitination as a critical regulator of these processes. These pathogens, including (), co-opt the host ubiquitin machinery by utilizing secreted or cell surface effectors to dampen innate host defenses. Inversely, the host utilizes ubiquitin ligase-mediated ubiquitination of intracellular pathogens and recruits autophagy receptors to induce xenophagy.
View Article and Find Full Text PDF(), the intracellular pathogen causing tuberculosis, has developed mechanisms that endow infectivity and allow it to modulate host immune response for its survival. Genomic and proteomic analyses of non-pathogenic and pathogenic mycobacteria showed presence of genes and proteins that are specific to . studies predicted that Rv1954A is a hypothetical secretory protein that exhibits intrinsically disordered regions and possess B cell/T cell epitopes.
View Article and Find Full Text PDF() persists as latent infection in nearly a quarter of the global population and remains the leading cause of death among infectious diseases. While BCG is the only vaccine for TB, its inability to provide complete protection makes it imperative to engineer BCG such that it expresses immunodominant antigens that can enhance its protective potential. comparative genomic analysis of Mycobacterium species identified Rv1507A as a "signature protein" found exclusively in .
View Article and Find Full Text PDF