Neutrinoless double beta decay (0νββ) is a yet unobserved nuclear process that would demonstrate Lepton number violation, a clear evidence of beyond standard model physics. The process two neutrino double beta decay (2νββ) is allowed by the standard model and has been measured in numerous experiments. In this Letter, we report a measurement of 2νββ decay half-life of ^{100}Mo to the ground state of ^{100}Ru of [7.
View Article and Find Full Text PDFWe report on the development of scintillating bolometers based on lithium molybdate crystals that contain molybdenum that has depleted into the double-β active isotope 100Mo (Li2100deplMoO4). We used two Li2100deplMoO4 cubic samples, each of which consisted of 45-millimeter sides and had a mass of 0.28 kg; these samples were produced following the purification and crystallization protocols developed for double-β search experiments with 100Mo-enriched Li2MoO4 crystals.
View Article and Find Full Text PDFThe CUPID-Mo experiment at the Laboratoire Souterrain de Modane (France) is a demonstrator for CUPID, the next-generation ton-scale bolometric 0νββ experiment. It consists of a 4.2 kg array of 20 enriched Li_{2}^{100}MoO_{4} scintillating bolometers to search for the lepton-number-violating process of 0νββ decay in ^{100}Mo.
View Article and Find Full Text PDFGiant resonances are collective excitation modes for many-body systems of fermions governed by a mean field, such as the atomic nuclei. The microscopic origin of such modes is the coherence among elementary particle-hole excitations, where a particle is promoted from an occupied state below the Fermi level (hole) to an empty one above the Fermi level (particle). The same coherence is also predicted for the particle-particle and the hole-hole excitations, because of the basic quantum symmetry between particles and holes.
View Article and Find Full Text PDFEnergies and spectroscopic factors of the first 7/2-, 3/2-, 1/2-, and 5/2- states in the (35)Si21 nucleus were determined by means of the (d, p) transfer reaction in inverse kinematics at GANIL using the MUST2 and EXOGAM detectors. By comparing the spectroscopic information on the Si35 and S37 isotones, a reduction of the p3/2-p1/2 spin-orbit splitting by about 25% is proposed, while the f7/2-f5/2 spin-orbit splitting seems to remain constant. These features, derived after having unfolded nuclear correlations using shell model calculations, have been attributed to the properties of the two-body spin-orbit interaction, the amplitude of which is derived for the first time in an atomic nucleus.
View Article and Find Full Text PDFAn excited state in the proton-rich unbound nucleus 12O was identified at 1.8(4) MeV via missing-mass spectroscopy with the 14O(p,t) reaction at 51 AMeV. The spin-parity of the state was determined to be 0+ or 2+ by comparing the measured differential cross sections with distorted-wave calculations.
View Article and Find Full Text PDFCoulomb excitation of the exotic neutron-rich nucleus (26)Ne on a (208)Pb target was measured at 58 MeV/u in order to search for low-lying E1 strength above the neutron emission threshold. This radioactive beam experiment was carried out at the RIKEN Accelerator Research Facility. Using the invariant mass method in the 25Ne+n channel, we observe a sizable amount of E1 strength between 6 and 10 MeV excitation energy.
View Article and Find Full Text PDFAngular distributions for 1n and 2n transfer are reported for the 6He+65Cu system at E_{lab}=22.6 MeV. For the first time, triple coincidences between alpha particles, neutrons, and characteristic gamma rays from the targetlike residues were used to separate the contributions arising from 1n and 2n transfer.
View Article and Find Full Text PDFThe isoscalar giant monopole resonance (GMR) and giant quadrupole resonance (GQR) have been measured in the 56Ni unstable nucleus by inducing the 56Ni(d,d') reaction at 50A MeV in the Maya active target at the GANIL facility. The GMR and GQR centroids are measured at 19.3+/-0.
View Article and Find Full Text PDFInelastic scattering of 40Ca on 40Ca at 50 MeV/A has been measured in coincidence with protons at the GANIL facility. The SPEG spectrometer was associated with 240 CsI(Tl) scintillators of the INDRA 4pi array, allowing for the measurement of complete decay events. The missing energy method was applied to these events.
View Article and Find Full Text PDFThe N = 28 shell closure has been investigated via the 46Ar(d,p)47Ar transfer reaction in inverse kinematics. Energies and spectroscopic factors of the neutron p(3/2), p(1/2), and f(5/2) states in 47Ar were determined and compared to those of the 49Ca isotone. We deduced a reduction of the N = 28 gap by 330(90) keV and spin-orbit weakenings of approximately 10(2) and 45(10)% for the f and p states, respectively.
View Article and Find Full Text PDFTo investigate the behavior of the N = 14 neutron gap far from stability with a neutron-sensitive probe, proton elastic and 2(1)+ inelastic scattering angular distributions for the neutron-rich nucleus 22O were measured using the MUr à STrip detector array at the Grand Accélérateur National d'Ions Lourds facility. A deformation parameter beta(p,p') = 0.26 +/- 0.
View Article and Find Full Text PDFThe neutron-rich (66,68)Ni have been produced at GANIL via interactions of a 65.9A MeV 70Zn beam with a 58Ni target. Their reduced transition probability B(E2;0(+)(1)-->2+) has been measured for the first time by Coulomb excitation in a (208)Pb target at intermediate energy.
View Article and Find Full Text PDFThe energetic proton emission has been investigated as a function of the reaction centrality for the system (58)Ni + (58)Ni at 30A MeV. Extremely energetic protons (E(NN)(p) > or = 130 MeV) were measured and their multiplicity is found to increase almost quadratically with the number of participant nucleons, thus indicating the onset of a mechanism beyond one- and two-body dynamics.
View Article and Find Full Text PDFPhys Rev C Nucl Phys
December 1995