Publications by authors named "JA Molina-Bolivar"

A fluorescent labeling protocol for hydroxylated natural compounds with promising antitumor properties has been used to synthesize, in yields of 72-86%, 12 derivatives having fluorescent properties and biological activity. The reagent used for the synthesis of these fluorescent derivatives was 7-nitrobenzo-2-oxa-1,3-diazole chloride (NBD-Cl). The linkers employed to bind the NBD-Cl reagent to the natural compounds were ω-amino acids (Aa) of different chain lengths.

View Article and Find Full Text PDF

Liquid lipid nanocapsules are oil droplets surrounded by a protective shell, which enable high load and allow controlled delivery of lipophilic compounds. However, their use in food formulations requires analysing their digestibility and interaction with mucin. Here, serum albumins and hyaluronic acid shelled olive oil nanocapsules are analysed to discern differences between human and bovine variants, the latter usually used as model system.

View Article and Find Full Text PDF

One of the major applications of Serum Albumins is their use as delivery systems for lipophilic compounds in biomedicine. Their biomedical application is based on the similarity with Human Serum Albumin (HSA), as a fully biocompatible protein. In general, Bovine Serum Albumin (BSA) is treated as comparable to its human homologue and used as a model protein for fundamental studies since it is available in high amounts and well understood.

View Article and Find Full Text PDF

Synthesis, characterization and spectroscopic investigation of maslinic acid labeled with fluorescent 7-amino-4-methylcoumarin is reported. It was found that the coumarin-maslinic derivative (MaCo) forms an excellent fluorescence resonance energy transfer (FRET) pair with the tryptophan (Trp) residue of human serum albumin (HSA). This feature allowed for monitoring HSA conformational alterations by measuring the distance between donor (Trp) and acceptor (MaCo) through Förster energy transfer mechanism.

View Article and Find Full Text PDF

Liquid lipid nanocapsules (LLN) represent a promising new generation of drug-delivery systems. They can carry hydrophobic drugs in their oily core, but the composition and structure of the surrounding protective shell determine their capacity to survive in the circulatory system and to achieve their goal: penetrate tumor cells. Here, we present a study of LLN covered by the protein human serum albumin (HSA) and loaded with curcumin as a hydrophobic model drug.

View Article and Find Full Text PDF

Human serum albumin (HSA) has been shown to be an ideal protein for nanoparticle preparation. These are usually prepared by using cross linker agents such as glutaraldehyde (GAD). Liquid lipid nanocapsules (LLN) constitute a new generation of nanoparticles more biocompatible and versatile for oral delivery of lipophylic drugs.

View Article and Find Full Text PDF

The photodynamics of Coumarin 6 have been investigated in three nonionic micellar assemblies, i.e., n-dodecyl-β-D-maltoside (β-C12G₂), p-tert-octyl-phenoxy polyethylene (9.

View Article and Find Full Text PDF

Albumins, in the form of nanoparticles, are increasingly used as drug carriers in the medical field, and the size effect of these nanomaterials is of major importance since it may affect their bioavailability and the in vivo behaviour after intravenous injection. This research provides a comprehensive study on the preparation of BSA nanoparticles, based on a simple coacervation method, with suitable size, size distribution, and surface charge for drug-delivery applications. Numerous experimental variables were examined in order to characterize their impact on nanoparticle size, distribution, electrophoretic mobility, and yield.

View Article and Find Full Text PDF

The effect of the addition of ethylene glycol (EG) on the interfacial adsorption and micellar properties of the alkylglucoside surfactant n-octyl-β-D-thioglucopyranoside (OTG) has been investigated. Critical micelle concentrations (cmc) upon EG addition were obtained by both surface tension measurements and the pyrene 1:3 ratio method. A systematic increase in the cmc induced by the presence of the co-solvent was observed.

View Article and Find Full Text PDF

Mixed micelles of n-octyl-β-D-thioglucoside (OTG) and octaethylene-glycol monododecyl ether (C(12)E(8)), two non-ionic surfactants belonging to the alkyl glucosides and polyoxyethylene alkyl ether families, respectively, were investigated by using light scattering and fluorescence probe techniques. From the determination of the critical micelle concentration (cmc), by the well-established pyrene 1:3 ratio method, it was found that the mixed system behaves ideally, the micellization process being clearly controlled by the ethoxylated surfactant. The micellar hydrodynamic radius as a function of temperature, composition and concentration was obtained by dynamic light scattering measurements.

View Article and Find Full Text PDF

Studies on the effect of urea on micelle formation and structure of n-octyl-beta-D-thioglucoside (OTG) and N-decanoyl-N-methylglucamide (MEGA-10) were carried out by using the steady-state and time-resolved fluorescence techniques, together with combined static and dynamic light scattering measurements. A similar increase in the critical micelle concentration with the urea addition was observed for both surfactants. This behavior was attributed to a rise in the solubility of hydrocarbon tails and the increase of solvation of the headgroup of the surfactants in the presence of urea.

View Article and Find Full Text PDF

The influence of NaCl addition and temperature on the self-assembly, hydration, and structures of N-decanoyl-N-methylglucamide (MEGA-10) in dilute solution has been investigated by using several experimental techniques, including tensiometry, steady-state fluorescence, density, viscosity, and static and dynamic light scattering. Tensiometry and fluorescence probe studies, by using pyrene as a probe, were used to obtain the critical micelle concentration (cmc) upon the electrolyte addition. The mean micellar aggregation numbers (N(agg)) as a function of the salt addition were obtained by both static light scattering and static quenching methods.

View Article and Find Full Text PDF

A statistical mechanics approach is applied to predict the critical parameters of coagulation in the secondary minimum for charged colloidal suspensions. This method is based on the solution of the reference hypernetted chain (RHNC) integral equation, and it is intended to estimate only the locus of the critical point instead of the full computation of the "gas-liquid" coexistence. We have used an extrapolation procedure due to the lack of solution of the integral equation in the vicinity of the critical point.

View Article and Find Full Text PDF

This report investigates the effect of sodium chloride (NaCl) on the micellization, surface activity, and the evolution in the shape and size of n-octyl beta-D-thioglucopyranoside (OTG) aggregates. By using surface tension measurements, information was obtained on both changes in the critical micelle concentration and adsorption behavior in the air-liquid interface with the electrolyte concentration. These data were used to obtain the thermodynamic properties of micellization along with the corresponding adsorption parameters in the air-liquid interface.

View Article and Find Full Text PDF

Adhesion forces between different protein layers adsorbed on different substrates in aqueous media have been measured by means of an atomic force microscope using the colloid probe technique. The effects of the loading force, the salt concentration and pH of the medium, and the electrolyte type on the strength, the pull-off distance, and the separation energy of such adhesion forces have been analyzed in depth. Two very different proteins (bovine serum albumin and apoferritin) and two dissimilar substrates (silica and polystyrene) were used in the experiments.

View Article and Find Full Text PDF

The latex agglutination immunoassay technique uses polymer colloids as carriers for antibodies or antigens to enhance the immunological reaction. In this work, the interaction of a lipopolysaccharide (LPS) of Brucella Melitensis with two conventional latexes has been studied. Some experiments on the physical adsorption of the LPS onto these polystyrene beads have been performed and several complexes with different coverage degrees were obtained by modifying the incubation conditions.

View Article and Find Full Text PDF

The atomic force microscope, together with the colloid probe technique, has become a very useful instrument to measure interaction forces between two surfaces. Its potential has been exploited in this work to study the interaction between protein (apoferritin) layers adsorbed on silica surfaces and to analyze the effect of the medium conditions (pH, salt concentration, salt type) on such interactions. It has been observed that the interaction at low salt concentrations is dominated by electrical double layer (at large distances) and steric forces (at short distances), the latter being due to compression of the protein layers.

View Article and Find Full Text PDF

Silica is a very interesting system that has been thoroughly studied in the last decades. One of the most outstanding characteristics of silica suspensions is their stability in solutions at high salt concentrations. In addition to that, measurements of direct-interaction forces between silica surfaces, obtained by different authors by means of surface force apparatus or atomic force microscope (AFM), reveal the existence of a strong repulsive interaction at short distances (below 2 nm) that decays exponentially.

View Article and Find Full Text PDF

The effect of formamide on the micellization of tetradecyltrimethylammonium bromide has been investigated by conductance and fluorescence probe experiments. The critical micelle concentration and the degree of counterion dissociation of micelles were obtained from conductance measurements in the temperature range of 20 to 40 degrees C. It was found that these two parameters increase with both temperature and formamide content in the solvent system.

View Article and Find Full Text PDF

Protein coated particles present an anomalous colloidal stability at high ionic strength when the classical theory (DLVO) predicts aggregation. This observed deviation from DLVO behaviour appears for electrolyte concentrations above some critical bulk value. As we have suggested in previous publications the existence of an additional short-range repulsive 'hydration force' due to specific hydrated cation adsorption could explain this anomalous stability.

View Article and Find Full Text PDF

The aim of the present work is to study the role of the different forces involved in the agglutination of immuno gamma-globulin (IgG) covered latex particles due to antigen-antibody reaction. An experimental investigation on the adsorption of IgG molecules on three latexes with different surface charge densities is described. Photon correlation spectroscopy was used to determine the hydrodynamic layer thickness of the IgG molecules adsorbed on the latexes.

View Article and Find Full Text PDF

We report measurements on the aggregation processes in a colloidal suspension of polystyrene particles covered with F(ab')2 (immunoglobulin IgG fragment) performed by static and dynamic light scattering. In order to study the cluster morphology of aggregates, the fractal dimension is obtained from the dependence of the scattered intensity on the scattering wave number. The stability domains of bare and protein-coated polystyrene particles were examined by plotting the stability ratio as a function of electrolyte concentration.

View Article and Find Full Text PDF

Latex particles coated with IgG, currently used for immunoassay tests, are not colloidally stable under physiological conditions. Post-treatment of sensitized polystyrene microspheres with different substances (BSA, surfactants) to increase colloidal stability has been often used to solve this problem. We propose the possibility of stabilizing the antibody-latex conjugates by hydration forces at high ionic strength.

View Article and Find Full Text PDF

Colloidal particles coated with antibodies are currently used in diagnostic test systems for the detection of antigens in biological fluids. Immobilization is usually carried out by physical adsorption. Covalent coupling of antibodies to particles, however, offers certain advantages.

View Article and Find Full Text PDF

An experimental study on the colloidal stability of latex-F(ab')2 and latex-IgG systems is described. The stability domains were obtained using a low-angle scattering technique to measure the rates of aggregate formation and plotting the stability ratio as a function of electrolyte concentration. The protein-coated particles present an anomalous stability at high ionic strength when the classical theory predicts aggregation.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessiondnj8h08q06lsm0eje5aksiiip5he4t7d): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once