Pulses of narrow line-width optical photons can be used to calibrate and test sub-2 eV full-width at halfmaximum (FWHM) energy resolution transition-edge sensor (TES) microcalorimeters at low energies (< 1 keV), where it is very challenging to obtain X-ray calibration lines comparable to (or narrower than) the detector resolution. This scheme depends on the ability to resolve the number of 3 eV photons in each pulse, which we have recently demonstrated up to photon numbers of about 300. At LTD-18 we showed preliminary results obtained with this technique on a 0.
View Article and Find Full Text PDFHere we present a general algorithm for processing microcalorimeter data with special applicability to data with high photon count rates. Conventional optimal filtering, which has become ubiquitous in microcalorimeter data processing, suffers from its inability to recover overlapped pulses without sacrificing spectral resolution. The technique presented here was developed to address this particular shortcoming, and does so without imposing any assumptions beyond those made by the conventional technique.
View Article and Find Full Text PDFIEEE Trans Appl Supercond
August 2019
With the improving energy resolution of transitionedge sensor (TES) based microcalorimeters, performance verification and calibration of these detectors has become increasingly challenging, especially in the energy range below 1 keV where fluorescent atomic X-ray lines have linewidths that are wider than the detector energy resolution and require impractically high statistics to determine the gain and deconvolve the instrumental profile. Better behaved calibration sources such as grating monochromators are too cumbersome for space missions and are difficult to use in the lab. As an alternative, we are exploring the use of pulses of 3 eV optical photons delivered by an optical fiber to generate combs of known energies with known arrival times.
View Article and Find Full Text PDFWe have specialized astronomical applications for X-ray microcalorimeters with superconducting transition edge sensors (TESs) that require exceptionally good TES performance, but which operate in the small-signal regime. We have therefore begun a program to carefully characterize the entire transition surface of TESs with and without the usual zebra stripes to see if there are reproducible local "sweet spots" where the performance is much better than average. These measurements require precise knowledge of the circuit parameters.
View Article and Find Full Text PDFIEEE Trans Appl Supercond
August 2019
Time-division multiplexing (TDM) is the backup readout technology for the X-ray Integral Field Unit (X-IFU), a 3,168-pixel X-ray transition-edge sensor (TES) array that will provide imaging spectroscopy for ESA's Athena satellite mission. X-0IFU design studies are considering readout with a multiplexing factor of up to 40. We present data showing 40-row TDM readout (32 TES rows + 8 repeats of the last row) of TESs that are of the same type as those being planned for X-IFU, using measurement and analysis parameters within the ranges specified for X-IFU.
View Article and Find Full Text PDFLynx is an x-ray telescope, one of four large satellite mission concepts currently being studied by NASA to be a flagship mission. One of Lynx's three instruments is an imaging spectrometer called the Lynx x-ray microcalorimeter (LXM), an x-ray microcalorimeter behind an x-ray optic with an angular resolution of 0.5 arc sec and ∼2 m of area at 1 keV.
View Article and Find Full Text PDFIEEE Trans Appl Supercond
June 2017
We are developing superconducting transition-edge sensor (TES) microcalorimeter focal planes for versatility in meeting specifications of X-ray imaging spectrometers including high count-rate, high energy resolution, and large field-of-view. In particular, a focal plane composed of two sub-arrays: one of fine-pitch, high count-rate devices and the other of slower, larger pixels with similar energy resolution, offers promise for the next generation of astrophysics instruments, such as the X-ray Integral Field Unit (X-IFU) instrument on the European Space Agency's Athena mission. We have based the sub-arrays of our current design on successful pixel designs that have been demonstrated separately.
View Article and Find Full Text PDFThe future needs of space-based, observational planetary and astronomy missions include low mass and small volume radiometric instruments that can operate in high-radiation and low-temperature environments. Here, we focus on a central spectroscopic component, the bandpass filter. We model the bandpass response of the filters to target the wavelength of the resonance peaks at 20, 40, and 60 µm and report good agreement between the modeled and measured response.
View Article and Find Full Text PDFWe have found experimentally that the critical current of a square thin-film superconducting transition-edge sensor (TES) depends exponentially upon the side length L and the square root of the temperature T, a behavior that has a natural theoretical explanation in terms of longitudinal proximity effects if the TES is regarded as a weak link between superconducting leads. As a consequence, the effective transition temperature T{c} of the TES is current dependent and at fixed current scales as 1/L{2}. We have also found that the critical current can show clear Fraunhofer-like oscillations in an applied magnetic field, similar to those found in Josephson junctions.
View Article and Find Full Text PDFPhys Rev B Condens Matter
December 1996
Phys Rev B Condens Matter
October 1993