Publications by authors named "JA Caggiano"

To determine the safety of using argon as a deuteron beam stopping material, the  Ar(d,p)Ar cross section was measured at average deuteron energies of 3.6 MeV, 5.5 MeV, and 7.

View Article and Find Full Text PDF

Neutron spectra from secondary ^{3}H(d,n)α reactions produced by an implosion of a deuterium-gas capsule at the National Ignition Facility have been measured with order-of-magnitude improvements in statistics and resolution over past experiments. These new data and their sensitivity to the energy loss of fast tritons emitted from thermal ^{2}H(d,p)^{3}H reactions enable the first statistically significant investigation of charged-particle stopping via the emitted neutron spectrum. Radiation-hydrodynamic simulations, constrained to match a number of observables from the implosion, were used to predict the neutron spectra while employing two different energy loss models.

View Article and Find Full Text PDF

Full calculations of six-nucleon reactions with a three-body final state have been elusive and a long-standing issue. We present neutron spectra from the T(t,2n)α (TT) reaction measured in inertial confinement fusion experiments at the OMEGA laser facility at ion temperatures from 4 to 18 keV, corresponding to center-of-mass energies (E_{c.m.

View Article and Find Full Text PDF

Sixty-four neutral density filters constructed of metal plates with 88 apertures of varying diameter have been radiographed with a soft x-ray source and CCD camera at National Security Technologies, Livermore. An analysis of the radiographs fits the radial dependence of the apertures' image intensities to sigmoid functions, which can describe the rapidly decreasing intensity towards the apertures' edges. The fitted image intensities determine the relative attenuation value of each filter.

View Article and Find Full Text PDF

A common analysis procedure minimizes the ln-likelihood that a set of experimental observables matches a parameterized model of the observation. The model includes a description of the underlying physical process as well as the instrument response function (IRF). In the case investigated here, the National Ignition Facility (NIF) neutron time-of-flight (nTOF) spectrometers, the IRF is constructed from measurements and models.

View Article and Find Full Text PDF

An accurate understanding of burn dynamics in implosions of cryogenically layered deuterium (D) and tritium (T) filled capsules, obtained partly through precision diagnosis of these experiments, is essential for assessing the impediments to achieving ignition at the National Ignition Facility. We present measurements of neutrons from such implosions. The apparent ion temperatures T_{ion} are inferred from the variance of the primary neutron spectrum.

View Article and Find Full Text PDF

A new radiochemical method for determining deuterium-tritium (DT) fuel and plastic ablator (CH) areal densities (ρR) in high-convergence, cryogenic inertial confinement fusion implosions at the National Ignition Facility is described. It is based on measuring the (198)Au/(196)Au activation ratio using the collected post-shot debris of the Au hohlraum. The Au ratio combined with the independently measured neutron down scatter ratio uniquely determines the areal densities ρR(DT) and ρR(CH) during burn in the context of a simple 1-dimensional capsule model.

View Article and Find Full Text PDF

The Magnetic Recoil neutron Spectrometer (MRS) on the National Ignition Facility (NIF) measures the neutron spectrum in the energy range of 4-20 MeV. This paper describes MRS measurements of DT-fuel and CH-ablator ρR in DT gas-filled symmetry-capsule implosions at the NIF. DT-fuel ρR's of 80-140 mg/cm(2) and CH-ablator ρR's of 400-680 mg/cm(2) are inferred from MRS data.

View Article and Find Full Text PDF

We describe a radiochemical measurement of the ratio of isotope concentrations produced in a gold hohlraum surrounding an Inertial Confinement Fusion capsule at the National Ignition Facility (NIF). We relate the ratio of the concentrations of (n,γ) and (n,2n) products in the gold hohlraum matrix to the down-scatter of neutrons in the compressed fuel and, consequently, to the fuel's areal density. The observed ratio of the concentrations of (198m+g)Au and (196g)Au is a performance signature of ablator areal density and the fuel assembly confinement time.

View Article and Find Full Text PDF

We present the first results from an experimental campaign to measure the atomic ablator-gas mix in the deceleration phase of gas-filled capsule implosions on the National Ignition Facility. Plastic capsules containing CD layers were filled with tritium gas; as the reactants are initially separated, DT fusion yield provides a direct measure of the atomic mix of ablator into the hot spot gas. Capsules were imploded with x rays generated in hohlraums with peak radiation temperatures of ∼294  eV.

View Article and Find Full Text PDF
Article Synopsis
  • Neutron time-of-flight spectra from tritium-filled inertial confinement fusion experiments at the National Ignition Facility show improved energy resolution and demonstrate the first clear peak from the decay of (5)He at low reaction energies (E(c.m.) < 100 keV).
  • An R-matrix model has been developed to interpret these spectra, taking into account interference effects from fermion symmetry and intermediate states, which were found to be significant.
  • The findings suggest that the spectrum can be explained by sequential decay through ℓ=1 states in (5)He, providing a new perspective that challenges previous interpretations.
View Article and Find Full Text PDF

The time decay of several scintillation materials has been measured using the time correlated single photon counting method and a new organic crystal with a highly suppressed delayed light has been identified. Results comparing the light decay of the bibenzyl crystal with a xylene based detector, which is currently installed at National Ignition Facility will be presented.

View Article and Find Full Text PDF

Neutron yields are measured at the National Ignition Facility (NIF) by an extensive suite of neutron activation diagnostics. Neutrons interact with materials whose reaction cross sections threshold just below the fusion neutron production energy, providing an accurate measure of primary unscattered neutrons without contribution from lower-energy scattered neutrons. Indium samples are mounted on diagnostic instrument manipulators in the NIF target chamber, 25-50 cm from the source, to measure 2.

View Article and Find Full Text PDF

A new neutron time-of-flight (nTOF) detector with a bibenzyl crystal as a scintillator has been designed and manufactured for the National Ignition Facility (NIF). This detector will replace a nTOF20-Spec detector with an oxygenated xylene scintillator currently operational on the NIF to improve the areal-density measurements. In addition to areal density, the bibenzyl detector will measure the D-D and D-T neutron yield and the ion temperature of indirect- and direct-drive-implosion experiments.

View Article and Find Full Text PDF

DT neutron yield (Y(n)), ion temperature (T(i)), and down-scatter ratio (dsr) determined from measured neutron spectra are essential metrics for diagnosing the performance of inertial confinement fusion (ICF) implosions at the National Ignition Facility (NIF). A suite of neutron-time-of-flight (nTOF) spectrometers and a magnetic recoil spectrometer (MRS) have been implemented in different locations around the NIF target chamber, providing good implosion coverage and the complementarity required for reliable measurements of Y(n), T(i), and dsr. From the measured dsr value, an areal density (ρR) is determined through the relationship ρR(tot) (g∕cm(2)) = (20.

View Article and Find Full Text PDF

The National Ignition Facility has been used to compress deuterium-tritium to an average areal density of ~1.0±0.1 g cm(-2), which is 67% of the ignition requirement.

View Article and Find Full Text PDF

The radionuclide 22Na is a potential astronomical observable that is expected to be produced in classical novae in quantities that depend on the thermonuclear rate of the 22Na(p,γ)23Mg reaction. We have measured the strengths of low-energy 22Na(p,γ)23Mg resonances directly and absolutely using a radioactive 22Na target. We find the strengths of resonances at Ep=213, 288, 454, and 610 keV to be higher than previous measurements by factors of 2.

View Article and Find Full Text PDF

As a complement to passive detection systems, radiographic inspection of cargo is an increasingly important tool for homeland security because it has the potential to detect highly attenuating objects associated with special nuclear material or surrounding shielding, in addition to screening for items such as drugs or contraband. Radiographic detection of such threat objects relies on high image contrast between regions of different density and atomic number (Z). Threat detection is affected by scatter of the interrogating beam in the cargo, the radiographic system itself, and the surrounding environment, which degrades image contrast.

View Article and Find Full Text PDF

The strength of the Ec.m. = 184 keV resonance in the 26gAl(p, gamma)27 reaction has been measured in inverse kinematics using the DRAGON recoil separator at TRIUMF's ISAC facility.

View Article and Find Full Text PDF

The difference in the energies of the lowest states corresponding to the two nodeless single-particle orbitals outside the Z=50 closed proton shell, h(11/2) and g(7/2), increases with neutron excess. We have measured the Sn(alpha,t) reaction for all seven stable even Sn isotopes and found that the spectroscopic factors are constant for these two states, confirming their characterization as single-particle states. The trend in energies is consistent with a decrease in the nuclear spin-orbit interaction.

View Article and Find Full Text PDF

The excitation function for fusion evaporation in the (60)Ni+ (89)Y system was measured over a range in cross section covering 6 orders of magnitude. The cross section exhibits an abrupt decrease at extreme sub-barrier energies. This behavior, which is also present in a few other systems found in the literature, cannot be reproduced with present models, including those based on a coupled-channels approach.

View Article and Find Full Text PDF

Rotational bands feeding the ground state and the isomeric state in the proton emitter (141)Ho were observed using the recoil-decay tagging method. This constitutes direct evidence that (141)Ho is deformed. A quadrupole deformation of beta(2) = 0.

View Article and Find Full Text PDF

The structure of the halo nucleus 11Be has been studied using the reaction 9Be(11Be,10Be+gamma)X at 60 MeV/nucleon. The ground state structure of 11Be is determined by comparing the experimental cross sections to a calculation combining spectroscopic factors from the shell model with l-dependent single-particle cross sections obtained in an eikonal model. This experiment shows the dominant 1s single-particle character of the 11Be ground state and indicates a small contribution of 0d admixture in the wave function.

View Article and Find Full Text PDF