This study aims to examine geometric models of the corneal surface that can be used to reduce in reasonable time the dimensionality of datasets of normal anterior corneas. Polynomial models (P) like Zernike polynomials (ZP) and spherical harmonic polynomials (SHP) were obvious candidates along with their rational function (R) counterparts, namely Zernike rational functions (ZR) and spherical harmonic rational functions (SHR, new model). Knowing that both SHP and ZR were more accurate than ZP for the modeling of normal and keratoconus corneas, it was expected that both spherical harmonic (SH) models (SHP and SHR) would be more accurate than their Zernike (Z) counterparts (ZP and ZR, respectively), and both rational (R) models (SHR and ZR) more accurate than their polynomial counterparts (SHP and ZP, respectively) for a low dimensional space (coefficient number J < 30).
View Article and Find Full Text PDFEarly diagnosis of COVID-19 is required to provide the best treatment to our patients, to prevent the epidemic from spreading in the community, and to reduce costs associated with the aggravation of the disease. We developed a decision tree model to evaluate the impact of using an artificial intelligence-based chest computed tomography (CT) analysis software (icolung, icometrix) to analyze CT scans for the detection and prognosis of COVID-19 cases. The model compared routine practice where patients receiving a chest CT scan were not screened for COVID-19, with a scenario where icolung was introduced to enable COVID-19 diagnosis.
View Article and Find Full Text PDFBackground: Glioblastoma (GBM) is the most common primary brain tumor in adults, with a dismal prognosis. Treatment is hampered by GBM's unique biology, including differential cell response to therapy. Although several mitochondrial abnormalities have been identified, how mitochondrial DNA (mtDNA) mutations contribute to GBM biology and therapeutic response remains poorly described.
View Article and Find Full Text PDF