Using a routine procedure, a number of derivatives of the benzo[4,5]isothiazolo[2,3-]pyrazine-6,6-dioxide ring system have been synthesized from readily available starting materials. A series of chalcones were synthesized, which were subsequently reacted with chlorosulfonic acid to generate chalcone sulfonyl chlorides. The chalcone sulfonyl chlorides were then treated with bromine to generate dibromo chalcone sulfonyl chlorides.
View Article and Find Full Text PDFA simple synthetic route affording 27%-85% yields of benzo[6,7][1,5]diazocino[2,1-a]isoindol-12(14H)-one ring systems from readily available 3-(2-oxo-2-phenylethyl) isobenzofuran-1(3H)-ones and 2-(aminomethyl)aniline starting materials in toluene and catalysed by p-toluene-sulfonic acid is developed. The ¹H- and (13)C-NMR spectra of the final products were assigned using a variety of one and two-dimensional NMR experiments. The distinction between the two potential isomers of the final products was made on the basis of heteronuclear multiple bond connectivity (HMBC) NMR spectra.
View Article and Find Full Text PDFA number of 1,2-benzothiazines have been synthesized in a three-step process. Nine chalcones 1-9 bearing methyl, fluoro, chloro and bromo substituents were chlorosulfonated with chlorosulfonic acid to generate the chalcone sulfonyl chlorides 10-18. These were converted to the dibromo compounds 19-27 through reaction with bromine in glacial acetic acid.
View Article and Find Full Text PDFAerobic granular sludge (AGS) technology offers the possibility to remove organic carbon, nitrogen and phosphorus in a single reactor system. The granular structure is stratified in such a way that both aerobic and anaerobic/anoxic layers are present. Since most of the biological processes in AGS systems occur simultaneously, the measurement and estimation of the capacity of specific conversions is complicated compared to suspended biomass.
View Article and Find Full Text PDFIn this study, the effect of different operational conditions on biofilm development and nitrification in three moving-bed biofilm reactors (MBBRs) was investigated: two reactors were operated in a continuously fed regime and one in sequencing-batch mode. The presence of organic carbon reduced the time required to form stable nitrifying biofilms. Subsequent stepwise reduction of influent COD caused a decrease in total polysaccharide and protein content, which was accompanied by a fragmentation of the biofilm, as shown by scanning electron microscopy, and by an enrichment of the biofilm for nitrifiers, as observed by fluorescent in situ hybridization (FISH) analysis.
View Article and Find Full Text PDFThe effect of salinity on the activity of nitrifying bacteria, floc characteristics, and microbial community structure accessed by fluorescent in situ hybridization and polymerase chain reaction-denaturing gradient gel electrophoresis techniques was investigated. Two sequencing batch reactors (SRB₁ and SBR₂) treating synthetic wastewater were subjected to increasing salt concentrations. In SBR₁, four salt concentrations (5, 10, 15, and 20 g NaCl/L) were tested, while in SBR₂, only two salt concentrations (10 and 20 g NaCl/L) were applied in a more shock-wise manner.
View Article and Find Full Text PDF