Publications by authors named "J-O Karlsson"

Platinum-containing chemotherapeutic drugs are efficacious in many forms of cancer but are dose-restricted by serious side effects, of which peripheral neuropathy induced by oxidative-nitrosative-stress-mediated chain reactions is most disturbing. Recently, hope has been raised regarding the catalytic antioxidants mangafodipir (MnDPDP) and calmangafodipir [CaMn(DPDP); PledOx], which by mimicking mitochondrial manganese superoxide dismutase (MnSOD) may be expected to overcome oxaliplatin-associated chemotherapy-induced peripheral neuropathy (CIPN). Unfortunately, two recent phase III studies (POLAR A and M trials) applying CaMn(DPDP) in colorectal cancer (CRC) patients receiving multiple cycles of FOLFOX6 (5-FU + oxaliplatin) failed to demonstrate efficacy.

View Article and Find Full Text PDF

Disappointing results from the POLAR A and M phase III trials involving colorectal cancer patients on chemotherapy with FOLFOX6 in curative (A) and palliative (M) settings have been reported by the principal investigators and the sponsor (PledPharma AB/Egetis Therapeutics AB). FOLFOX6, oxaliplatin in combination with 5-fluorouracil (5-FU), possesses superior tumoricidal activity in comparison to 5-FU alone, but suffers seriously from dose-limiting platinum-associated Chemotherapy-Induced Peripheral Neuropathy (CIPN). The aim of the POLAR trials was to demonstrate that PledOx [calmangafodipir; CaMn(DPDP)] reduced the incidence of persistent CIPN from 40% to 20%.

View Article and Find Full Text PDF

On 2 July 2021, highly negative results were reported from the POLAR A and M phase III trials in patients with colorectal cancer, treated with an oxaliplatin-based regimen and co-treated with calmangafodipir (CaM; PledOx; PledPharma AB/Egetis Therapeutics AB) or placebo. The results revealed persistent chemotherapy-induced peripheral neuropathy (CIPN) in 54.8% of the patients treated with PledOx, compared with 40.

View Article and Find Full Text PDF

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is characterized by massive inflammation of the arterial endothelium accompanied by vasoconstriction and widespread pulmonary micro thrombi. As a result, due to the destruction of nitric oxide (NO) by inflammatory superoxide (O), pulmonary NO concentration ceases, resulting in uncontrolled platelet aggregation and massive thrombosis, which kills the patients. Introducing NO by inhalation (INO) may replace the loss of endothelium-derived NO.

View Article and Find Full Text PDF

We have with enthusiasm read the article "Calmangafodipir Reduces Sensory Alterations and Prevents Intraepidermal Nerve Fibers Loss in a Mouse Model of Oxaliplatin Induced Peripheral Neurotoxicity"[...

View Article and Find Full Text PDF

Oxaliplatin typically causes acute neuropathic problems, which may, in a dose-dependent manner, develop into a chronic form of chemotherapy-induced peripheral neuropathy (CIPN), which is associated with retention of Pt in the dorsal root ganglion. A clinical study by Coriat and co-workers suggests that co-treatment with mangafodipir [Manganese(II) DiPyridoxyl DiPhosphate; MnDPDP] cures ongoing CIPN. These authors anticipated that it is the manganese superoxide dismutase mimetic activity of MnDPDP that explains its curative activity.

View Article and Find Full Text PDF

Background: Blood transfusions are frequently given to patients with septic shock. However, the benefits and harms of different hemoglobin thresholds for transfusion have not been established.

Methods: In this multicenter, parallel-group trial, we randomly assigned patients in the intensive care unit (ICU) who had septic shock and a hemoglobin concentration of 9 g per deciliter or less to receive 1 unit of leukoreduced red cells when the hemoglobin level was 7 g per deciliter or less (lower threshold) or when the level was 9 g per deciliter or less (higher threshold) during the ICU stay.

View Article and Find Full Text PDF

Background: Over the past 10-15 years, a substantial amount of work has been done by the scientific, regulatory, and business communities to elucidate the effects and risks of pharmaceuticals and personal care products (PPCPs) in the environment.

Objective: This review was undertaken to identify key outstanding issues regarding the effects of PPCPs on human and ecological health in order to ensure that future resources will be focused on the most important areas.

Data Sources: To better understand and manage the risks of PPCPs in the environment, we used the "key question" approach to identify the principle issues that need to be addressed.

View Article and Find Full Text PDF