Objective: To test the hypothesis that reduced slow-wave sleep, or N3 sleep, which is thought to underlie the restorative functions of sleep, is associated with MRI markers of brain aging, we evaluated this relationship in the community-based Framingham Heart Study Offspring cohort using polysomnography and brain MRI.
Methods: We studied 492 participants (age 58.8 ± 8.
Objective: To determine whether vascular and neurodegenerative factors influence cognition before clinically relevant Alzheimer disease pathology, we analyzed MRI measures and amyloid imaging in an ethnoracially diverse cohort of cognitively normal individuals older than 60 years.
Methods: Participants (n = 154; mean age 74.15 ± 6.
Background And Purpose: Periventricular white matter hyperintensities (WMH; PVWMH) and deep WMH (DWMH) are regional classifications of WMH and reflect proposed differences in cause. In the first study, to date, we undertook genome-wide association analyses of DWMH and PVWMH to show that these phenotypes have different genetic underpinnings.
Methods: Participants were aged 45 years and older, free of stroke and dementia.
Objective: To determine whether free water (FW) content, initially developed to correct metrics derived from diffusion tensor imaging and recently found to be strongly associated with vascular risk factors, may constitute a sensitive biomarker of white matter (WM) microstructural differences associated with cognitive performance but remains unknown.
Methods: Five hundred thirty-six cognitively diverse individuals, aged 77 ± 8 years, received yearly comprehensive clinical evaluations and a baseline MRI examination of whom 224 underwent follow-up MRI. WM microstructural measures, including FW, fractional anisotropy, and mean diffusivity corrected for FW and WM hyperintensity burden were computed within WM voxels of each individual.